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Abstract
Functional markers are needed for key genes involved in 
drought tolerance to improve selection for crop yield under 
moisture stress conditions. The objectives of this study were 
to (i) characterize five drought tolerance candidate genes, 
namely dehydration responsive element binding 1A (DREB1A), 
enhanced response to abscisic acid (ERA1-B and ERA1-D), and 
fructan 1-exohydrolase (1-FEH-A and 1-FEH-B), in wheat (Triticum 
aestivum L.) for nucleotide and haplotype diversity, Tajima’s D 
value, and linkage disequilibrium (LD) and (ii) associate within-
gene single nucleotide polymorphisms (SNPs) with phenotypic 
traits in a spring wheat association mapping panel (n = 126). 
Field trials were grown under contrasting moisture regimes in 
Greeley, CO, and Melkassa, Ethiopia, in 2010 and 2011. 
Genome-specific amplification and DNA sequence analysis of 
the genes identified SNPs and revealed differences in nucleotide 
and haplotype diversity, Tajima’s D, and patterns of LD. DREB1A 
showed associations (false discovery rate adjusted probability 
value = 0.1) with normalized difference vegetation index, 
heading date, biomass, and spikelet number. Both ERA1-A and 
ERA1-B were associated with harvest index, flag leaf width, 
and leaf senescence. 1-FEH-A was associated with grain yield, 
and 1-FEH-B was associated with thousand kernel weight and 
test weight. If validated in relevant genetic backgrounds, the 
identified marker–trait associations may be applied to functional 
marker-assisted selection.

Drought tolerance is a complex trait that involves 
the expression of many genes. A better understand-

ing of the roles and relative importance of those genes 
would aid the development of drought tolerant crop 
cultivars. A drought tolerance candidate gene is a DNA 
sequence that co-maps with a drought tolerance quan-
titative trait locus (QTL) and encodes a protein that can 
be functionally associated with the stress response or 
adaptation process (Cattivelli et al., 2008). In plants, the 
construction of molecular linkage maps based on candi-
date genes is one way of identifying the genes underly-
ing QTL instead of time-consuming fine mapping. This 
candidate gene strategy shows promise for bridging the 
gap between quantitative genetic and molecular genetic 
approaches to study complex traits such as drought tol-
erance. Candidate gene association mapping is aimed 
at linking phenotypic variation with polymorphic sites 
in candidate genes to identify causative polymorphisms 
(Martinez-Gonzalez et al., 2008).

Drought stress induces a large number of genes that 
have been identified and characterized for their function 
(Shinozaki and Yamaguchi-Shinozaki, 2007). There 
are two categories of genes in terms of response to the 
phytohormone abscisic acid (ABA): ABA-independent 
and ABA-dependent. For example, ABA-independent 
dehydration responsive element binding (DREB) genes are 
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known for their association with abiotic stress tolerance 
(Latini et al., 2007). Full-length sequences of DREB1 and 
DREB2 genes have been cloned from rice (Oryza sativa 
L.), maize (Zea mays L.), Arabidopsis thaliana (L.) Heynh., 
and wheat (Triticum aestivum L.), and the DREB1 gene 
sequences from the three genomes of wheat have been 
mapped to chromosomes 3A, 3B, and 3D (Wei et al., 2009). 
Transgenic wheat with the DREB1A gene from A. thaliana 
controlled by the stress-inducible rd29a promoter showed 
greater root branching, increased drought tolerance, and 
larger spike size than nontransgenic wheat plants in a 
greenhouse study (Pellegrineschi et al., 2004). However, 
in a recent field evaluation the transgenic DREB1A-wheat 
lines did not have a grain yield advantage over control lines 
under water deficit conditions (Saint Pierre et al., 2012), 
despite their better recovery after severe water stress and 
higher water use efficiency in the greenhouse. In transgenic 
groundnut (Arachis hypogaea L.) plants, DREB1A improved 
transpiration efficiency (Bhatnagar-Mathur et al., 2007), 
increased root:shoot ratio (Vadez et al., 2007), and 
increased root length density in deeper soil layers under 
water deficit conditions, thereby enhancing water uptake 
of transgenic plants (Vadez et al., 2013).The DREB2 gene 
from wheat improved freezing and osmotic stress tolerance 
when expressed in tobacco (Nicotiana tabacum L.) plants 
(Kobayashi et al., 2008). Fructan 1-exohydrolase (1-FEH) is 
another ABA-independent gene that is implicated in cold 
and drought tolerance through membrane stabilization and 
remobilization of water-soluble carbohydrates from stem to 
developing grain (Lothier et al., 2007; Hincha et al., 2003). 
The three copies of the 1-FEH gene were mapped to the 
short arms of group 6 chromosomes, that is, 6AS, 6BS, and 
6DS (Zhang et al., 2008).

Increased ABA production under drought 
conditions activates expression of ABA-dependent 
drought tolerance-related genes (Shinozaki and 
Yamaguchi-Shinozaki, 2007). Expression of the ERA1 
(enhanced response to ABA) gene, which has been cloned 
from A. thaliana (Cutler et al., 1996) and hexaploid 
wheat (Manmathan et al., 2013), is ABA-dependent in 
its expression. It has been shown that ERA1 mutants 
increased drought tolerance of A. thaliana through ABA-
stimulated stomatal closure, thereby effectively reducing 
water loss through transpiration (Pei et al., 1998; 
Ziegelhoffer et al., 2000).

Marker-assisted selection has increased the precision 
of the variety development process in classical plant 
breeding for genes of relatively large effect. Single 
nucleotide polymorphisms are becoming the markers 
of choice in plant breeding programs for construction 
of high-resolution genetic maps and genomic selection. 
Compared to other marker types, single nucleotide 
polymorphisms (SNPs) are generally more abundant, 
stable, amenable to automation, efficient, and cost 
effective (Rafalski, 2002; Akhunov et al., 2010). 
Single nucleotide polymorphisms can be individually 
responsible for phenotypic variation of a trait or linked 
to causative SNPs (Langridge and Fleury, 2011). Selecting 

the most suitable set of SNPs (either causative or 
linked) in a cost-effective manner is a key step toward 
application of molecular markers for crop improvement 
(McCouch et al., 2010).

Different methods can be used to discover SNPs. 
However, the most straightforward approach is direct 
resequencing of amplicons of genes from different 
genotypes (Rafalski, 2002). Amplification of DNA 
segments with genome-specific primers for polyploids 
such as hexaploid wheat is challenging due to sequence 
similarity among gene copies on homoeologous 
chromosomes and among genes within a gene family. 
This may slow down to some extent the application of 
functional markers in wheat breeding.

A functional marker is a marker developed from a 
SNP or indel within a gene that is responsible for variation 
in the trait of interest (Andersen and Lubberstedt, 2003). 
The use of functional markers in molecular plant breeding 
is more advantageous than linked markers because the 
latter are not diagnostic across breeding populations due 
to recombination between the marker and the putative 
causative SNP region in subsequent generations. Since 
functional markers are developed from SNPs within a 
gene, marker information can be used confidently across 
breeding programs to select favorable alleles for a trait of 
interest (Bagge and Lubberstedt, 2008). Several genes for 
agronomic traits (e.g., semidwarfism genes) and quality 
traits (e.g., polyphenol oxidase) have been identified for 
wheat (Wei et al., 2009; Bagge and Lubberstedt, 2008), 
but functional markers have been developed for only 
a few of them. Therefore, more functional markers are 
needed to enhance the application of molecular markers in 
crop improvement.

Generally, once genes that determine the genetic 
basis of a trait are known, developing functional markers 
to select for favorable alleles is an important aspect of 
using genetic information in practical plant breeding 
(Langridge and Fleury, 2011). For successful functional 
marker development, prior information about the level 
of DNA polymorphism, extent of linkage disequilibrium 
(LD), and within-gene nucleotide diversity is required. 
This information is rare for drought tolerance genes 
in hexaploid wheat. Therefore, the objectives of this 
study were to (i) characterize five drought tolerance 
candidate genes in wheat for nucleotide and haplotype 
diversity, Tajima’s D value, and LD and (ii) determine the 
association between within-gene SNPs and phenotypic 
traits in a spring wheat association mapping panel.

Materials and Methods
Plant Materials
A total of 126 lines was selected from a set of 294 spring 
wheat lines of an association mapping panel, which 
was developed by the International Maize and Wheat 
Improvement Center (CIMMYT) from entries in the 
Elite Spring Wheat Yield Trial (26th, 27th, and 28th), 
Semiarid Wheat Yield Trial (first to 16th) and High 
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Temperature Wheat Yield Trial (Lopes et al., 2012). 
The panel was developed to identify QTL or genes for 
drought and heat tolerance and included many synthetic 
hexaploid-derived wheat lines (Lopes and Reynolds, 
2012). The entire mapping panel was grown and self-pol-
linated for one generation before subsampling. The lines 
in the subsample were chosen based on their diversity 
in morphology and agronomic characters in field evalu-
ations under rainfed and irrigated conditions in 2011 at 
Greeley, CO. The pedigree of each line was also taken 
into account to minimize parental relatedness.

Phenotypic Evaluation
The field trial was conducted at Greeley, CO (40.45° N, 
104.64° W, and elevation 1427 m), in 2010 and 2011 and at 
Melkassa, Ethiopia (8.40° N, 39.33° E, and elevation 1550 
m), in 2011. The soil at the Greeley site is well drained with 
fine sandy loam to clay loam texture and a pH of 7.4 to 8.4. 
The dominant soil type at Melkassa is sandy loam (Ando-
sol of volcanic origin) with pH ranging from 7.0 to 8.2 
(Ethiopian Institute of Agricultural Research, Melkassa 
Agricultural Research Center, unpublished bulletin, 2011).

On 5 Apr. 2010, we planted 285 lines for evaluation 
under fully irrigated conditions in Greeley. The site 
received a total of 271 mm of rainfall from January 
through July, and the plots were supplemented with 94 
mm from three irrigations (twice during the vegetative 
stage and once after heading). In 2011 we evaluated 288 
lines at Greeley under both fully irrigated (“wet”) and 
rainfed (“dry”) conditions. Both treatments were irrigated 
similarly at planting (15 April), but later the wet treatment 
was supplemented three times with drip irrigation during 
the vegetative and grain filling stages while the dry 
treatment received supplemental irrigation only once at 
heading to avoid complete failure of the experiment. The 
wet treatment received a total of 313 mm water (rainfall 
plus irrigation) whereas the dry treatment received 192 
mm of water (rainfall plus irrigation) during the growing 
season and the preceding 3 mo (January through July).

In both years each entry was replicated twice in a 
Latinized row–column design prepared with CycDesign 3.0 
software (VSN International, 2005). Each line was planted 
in four-row plots 1.53 m long and 0.92 m wide with 0.20 m 
spacing between rows. The seeding rate was approximately 
173 seeds m-2. Weeds were controlled manually as required.

At Melkassa, Ethiopia, 294 lines were planted on 
17 July 2011 in wet soil and on 19 July 2011 in drier 
soil in an adjacent field. The experiment was laid out 
as an α lattice design with 14 plots per block and two 
replications. Plots were two rows 2.5 m long, with 0.2 
m spacing between rows and 0.4 m spacing between 
plots. Seeding rate was based on local recommendation 
of 150 kg ha-1. Nitrogen fertilizer was applied in split 
applications at planting and tillering at a total rate of 50 
kg ha-1. Phosphorus fertilizer was applied at planting 
as (NH4)2HPO4 (diammonium phosphate) at a rate of 
100 kg ha-1. The site received a total of 533 mm rainfall 
during the growing season (July–September, 2011).

Morphological and Phenological Traits
Flag leaf length (measured in centimeters from leaf collar 
to the tip) and maximum width (measured in centime-
ters on the widest part of the leaf) were recorded as the 
average measurement of three flag leaves per plot, and 
flag leaf area (cm2) was calculated as flag leaf length × 
flag leaf width × 0.75.

Plant height was recorded as the average of three 
values measured in centimeters from the soil surface to 
the tip of the spike excluding awns. Days to heading was 
recorded as the number of days from planting until 50% 
of the spikes in each plot had completely emerged above 
the flag leaves. Days to maturity was recorded as the 
number of days from planting until 50% of the peduncles 
in each plot had turned yellow. Grain filling duration was 
calculated as the difference between the days to heading 
and days to maturity.

Vegetation Indices and Leaf Senescence
Normalized difference vegetation index (NDVI) was 
obtained by scanning plants in each plot during the grain 
filling stage with a GreenSeeker instrument model 3541 
(NTech Industries Inc.). A green leaf area index was 
obtained from a photo taken at heading at a height of 
approximately 0.50 m directly above each plot with a digi-
tal camera (Coolpix S8100; Nikon Corp.) and processed 
with Breedpix software (Casadesus et al., 2007). Leaf 
senescence was scored during the grain filling stage a week 
before physiological maturity on a scale from 0 to 10, in 
which 0 indicates completely green leaves and 10 indicates 
that all leaves in a plot had changed completely to yellow.

Kernel and Grain Yield-Related Traits
Biomass samples were taken by cutting all the plants at 
ground level in one row of each plot at maturity. Final 
dry biomass was determined by weighing samples after 
48 h in a 40°C drier. Those samples were threshed and 
the grain weight was used to calculate harvest index as 
the ratio of grain weight to total biomass weight. The 
remaining plants in each plot were harvested by a com-
bine. Grain yield was the total weight of seed in each plot 
(combine harvest plus biomass grain weight) divided by 
the plot area and expressed as kilograms per hectare. 
Spike length, spikelet number per spike, kernel number 
and weight (g) per spike, and kernel number per spikelet 
were recorded as the average of five spikes per plot. Thou-
sand kernel weight was determined by extrapolation after 
counting seeds of five spikes with a seed counter (Model 
900-2; International Marketing and Design Corp.) and 
obtaining the weight of the seeds. Number of spikes per 
square meter was calculated by dividing the number of 
kernels per square meter by kernel number per spike. The 
number of kernels per square meter was obtained from 
the ratio of grain yield (expressed as g m-2) to thousand 
kernel weight, multiplied by 1000. Single kernel diameter 
(mm), kernel hardness, and single kernel weight (mg) 
were determined from 100 seeds using a Single Kernel 
Characterization System Instrument model 4100 (Perten 
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Instruments). Test weight (kg hL-1) was determined 
using standard procedures from a small sample of the 
grain collected at harvest.

Phenotypic Data Analysis
Analysis of variance for the phenotypic data was conducted 
first using the GLM procedure of SAS version 9.3 (SAS Insti-
tute, 2011), considering genotype as a fixed effect. Normality 
of the data for each trait was checked using a Q-Q plot of 
residuals in the SAS GLIMMIX procedure, and all traits 
were consistent with a normal distribution. Best linear unbi-
ased predictions and variance components were obtained 
for all traits using the Mixed procedure in SAS, considering 
genotype as a random variable. In the combined data analy-
sis, environment was considered a fixed variable. To account 
for spatial variation in the experimental field, four spatial 
models (spatial power, anisotropic spatial power, Matérn 
spatial, and autoregressive models [AR1 × AR1]) were com-
pared using minimum Akaike information criterion and 
Bayesian information criterion for each trait (SAS Institute, 
2006). Since the correlation value due to spatial variability 
in each model was very low for each data set (except at Gree-
ley in 2010), there was little benefit from spatial adjustment 
in this study. Therefore, the autoregressive spatial adjust-
ment model was applied for the data set in 2010, but no 
adjustment was made for the remaining environments.

Broad-sense heritability (h2) for all traits in each 
environment and the combined dataset was calculated 
from variance components (obtained from SAS PROC 
VARCOMP [SAS Institute, 2011]) as h2 = genotypic 
variance/(genotypic variance + error variance/r), in which 
r = number of replications for a single environment. For 
combined data, heritability estimates were calculated as 
genotypic variance/[genotypic variance + (genotype × 
environment interaction variance/n) + (error variance/
nr)], in which n = number of environments. Pearson 
phenotypic correlation coefficients among traits were 
obtained using the CORR procedure in SAS.

Candidate Gene Selection and Analysis
Three drought tolerance candidate genes (ERA1, DREB1A, 
and 1-FEH) were selected for SNP identification, 

nucleotide diversity, and association analyses. Reference 
DNA sequences of two genes, 1-FEH and DREB1A, were 
obtained from the National Center for Biotechnology 
Information GenBank database (http://www.ncbi.nlm.
nih.gov/gene, accessed 26 Jan. 2011). The third candidate 
gene, ERA1, was recently cloned from wheat (Manmathan 
et al., 2013). Its cloning involved designing primers from 
conserved regions of previously identified homologous 
genes of related species, amplifying the gene region from 
hexaploid wheat, cloning the polymerase chain reaction 
(PCR) products into plasmids, and sequencing plasmid 
clones to identify sequences of the gene on the A, B, and 
D genomes. A primer pair reported by Wei et al. (2009) 
was used to amplify the DREB1A gene. The primers used 
to amplify ERA1 and 1-FEH were designed for genome-
specific amplification with primers designed from unique 
regions of the genes using primer3 software (Rozen and 
Skaletsky, 2000). Genome specificity of the primers was 
verified by PCR amplification of the corresponding gene 
in the hexaploid wheat progenitors Triticum urartu Tuma-
nian ex Gandilyan (AA, 2n = 2x = 14), Aegilops speltoides 
Tausch (BB, 2n = 2x = 14), and Aegilops tauschii Coss. 
(DD, 2n = 2x = 14). A complete list of the genome-specific 
primers is given in Table 1.

To extract DNA, leaf tissues were sampled 
from 2-wk-old seedlings of the 126 lines grown in 
a greenhouse. The leaf samples were immediately 
transferred to 2-mL tubes and stored at –80°C. The 
DNA was extracted following a standard cetyl trimethyl 
ammonium bromide extraction method with minor 
modification (Wei et al., 2009).

The following PCR protocol was used for the ERA1 
and 1-FEH genes. A total volume of 25 μL containing 100 
ng of genomic DNA, 1x PCR reaction buffer, 0.20 μM of 
each primer, 0.20 mM deoxyribonucleotide triphosphates 
(dNTPs), 1.5 mM MgCl2, 0.5 U of VELOCITY DNA 
polymerase (Bioline USA Inc. [http://www.bioline.com/, 
accessed 17 Mar. 2011]), and 3% dimethyl sulfoxide 
was used. The PCR was performed on a MJ PTC-200 
programmable thermal controller (MJ Research) as 
follows: initial denaturation at 98°C for 2 min; 30 cycles of 
98°C for 1 min, an annealing step at 68°C for ERA1 and 
64°C for 1-FEH for 1 min, and 72°C for 1.5 min; and final 
extension at 72°C for 10 min. Amplification of DREB1A 
was conducted using a total volume of 25 μL containing 
100 ng of genomic DNA, 1x PCR reaction buffer, 0.25 
μM of each primer, 0.45 mM dNTPs, 4.0 mM MgCl2, 
and 1.6 U of Taq DNA polymerase (Promega). The PCR 
amplification was done on a MJ PTC-200 programmable 
thermal controller at an initial denaturation temperature 
of 94°C for 3 min followed by 34 amplification cycles at 
94°C for 1 min, annealing temperature of 63°C for 1 min, 
and 72°C for 1.5 min, and final extension at 72°C for 10 
min. For each candidate gene, a primer optimization step 
was done on two genotypes from the mapping panel.

The expected size of each PCR product was 
confirmed by separation on 1.5 to 2% agarose gels, 
stained with ethidium bromide, and visualized under 

Table 1. Forward and reverse primer sequences used 
to amplify five drought tolerance candidate genes.

Target gene Primer Sequence
DREB1A P21F 5′-CGGAACCACTCCCTCCATCTC-3′

P21R 5′-CGGTTGCCCCATTAGACGTAA-3′
ERA1-B ERA1BF 5′-GATGTGACAATACATTACATATGCAGCT-3′

ERA1BR 5′-GGTGGGTACGTTTCTAAGGATGG-3′
ERA1-D ERA1DF 5′-CAACTCTGAACTATTGCAAAAGTGAACTTTC-3′

ERADR 5′-CTGCAATATCGGTGAGTTTCTTGTAGTTAA-3′
1-FEH-A W12F 5′-TATGCCACTTCCATGCTGGTA-3′

W12R 5′-CGATGCTGCTGCCAAGAATATAC-3′
1-FEH-B W32F 5′-CAAGAACTGGATGAACGGTACAT-3′

W32R 5′-CAATGGCTACTTGTGTTTAGCC-3′
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ultraviolet light. The amplified PCR products were 
purified and sequenced on an Applied Biosystems Inc. 
sequencing instrument at Beckman Coulter Genomics 
(Beckman Coulter Genomics). Sequences were initially 
obtained from 32 representative diverse genotypes. After 
confirming the presence of SNPs within the genes, PCR 
products from the remaining 94 lines were sequenced. 
The overall sequence data quality was high, with a pass 
rate of 96.35 and 97.60% for the 32 diverse genotypes and 
the remaining 94 lines, respectively.

To identify SNPs, consensus sequences were first 
obtained by aligning reverse and forward sequences 
with the reference sequences of each gene using 
SeqMan software (DNASTAR, 2008). Those sequences 
that showed less than 80% sequence identity with the 
references were excluded from subsequent analyses. 
Aligned sequences of each gene were analyzed for 
sequence diversity by characterizing nucleotide diversity, 
haplotype diversity, and LD using DnaSP version 5 
software (Rozas et al., 1999). Tajima’s D statistic was also 
calculated in DnaSP from the normalized differences 
between the number of segregating sites (S) and the 
average number of nucleotide diversity (π), and Tajima’s 
D significance test was conducted with the assumption 
that D follows β distribution (Tajima, 1989). Genome-
specific sequences of the ERA1 gene were mapped to the 
long arms of chromosomes 3A, 3B, and 3D through a 
basic local alignment search tool (BLAST) search against 
the survey sequences of all individual chromosomes 
of bread wheat in the International Wheat Sequencing 
Consortium database (http://wheat-urgi.versailles.inra.
fr/Seq-Repository, accessed 4 Feb. 2013).

Population Structure, Linkage Disequilibrium, and 
Marker–Trait Association Analysis
Diversity Array Technology (DArT) markers (Triti-
carte Pty. Ltd.; http://www.triticarte.com.au/, accessed 
11 June 2013; Akbari et al., 2006) were used to account 
for population structure and genetic relationship of the 
evaluated lines. A total 78 DArT markers (spaced >10 
cM) was selected from all chromosomes to determine 
the population structure. An admixture model with cor-
related allele frequency model in STRUCTURE software 
(Pritchard et al., 2000) was applied with a burn-in of 
20,000 iterations and 20,000 Markov Chain Monte Carlo 
duration to test a number of populations (k) value in the 
range of 3 to 12. Each k was replicated five times and the 
run that assigned more lines with probability of >0.5 in 
all clusters was used. The likely number of subpopula-
tions was determined using the approach of Evanno et al. 
(2005) in which the change of k (Δk) was maximized.

Single nucleotide polymorphisms within each 
gene were used to determine pairwise LD with GGT2 
computer software (Berloo, 2008). Fisher’s exact test 
was used to decide the significance of the LD among 
SNPs. Linkage disequilibrium was calculated across 
chromosomes 3A and 6A to compare the extent of LD 
decay around DREB1A, ERA1, and 1-FEH genes.

Phenotypic data collected from five environments 
were used to determine the effects of SNPs within each 
gene on the phenotypic traits. Since the selected lines 
were highly homozygous breeding lines developed via 
several generations of self-pollination, only a few sites 
were found to be heterozygous and these sites were 
considered as missing values in association analysis. The 
DArT markers were used to calculate kinship matrices 
among the lines as suggested by Bernardo (1993). A false 
discovery rate adjusted probability value of 0.1 was used 
as the threshold for significance of SNP–trait associations 
(Benjamini and Hochberg, 1995). A mixed linear model 
(Yu et al., 2006) with population structure and kinship 
in the model, as implemented in the TASSEL software 
version 3.0 (Bradbury et al., 2007), was applied for 
association analysis. This model showed least deviation 
of observed P-values from expected P-values in Q-Q plot 
when compared with that of Q (population structure) or 
K (kinship) model only.

Results
Phenotypic Evaluation
Analysis of variance revealed significant differences (P < 
0.05) among the genotypes for most traits in all environ-
ments. A total of 26 traits were measured or scored in this 
study, but this number varied depending on the year and 
location. In the combined data analysis for yield, variation 
due to genotype × environment interaction was about 5% 
of the total variation while about 3% of the total variation 
was due to genotypic differences. The mean yield of indi-
vidual lines ranged from a low of 1087 kg ha-1 at Greeley 
under dry conditions in 2011 to 5513 kg ha-1 at Melkassa 
under nonstressed conditions in 2011 (Table 2). The mean 
yield performance of genotypes in the nonstressed treat-
ment at Melkassa was about threefold higher than that of 
the irrigated treatment at Greeley in the same year (Table 
2). Furthermore, the genotypes had longer flag leaves, 
greater plant height, longer grain filling duration, more 
final biomass production, and, consequently, higher grain 
yield at Melkassa compared to Greeley. Although days to 
heading occurred within a range of 4 to 7 d in the Greeley 
environments for the subsampled population, the range at 
Melkassa was 15 to 18 d (Table 2).

The estimated heritability values for agronomic traits 
measured in each environment and combined data are 
presented in Table 2. The variance components from 
which heritability estimates were calculated are given in 
Supplemental Table S1. High heritability estimates were 
obtained for single kernel weight, test weight, and single 
kernel diameter. Grain yield showed higher and more 
consistent heritability estimates than yield component 
traits such as kernel number per square meter, spike 
number per square meter, kernel number per spikelet, 
kernel weight per spike, and biomass. Generally, 17 out 
of 25 traits (68%) had heritability estimates ≥50% in half 
or more test environments implying the reliability of the 
phenotypic measurements.
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The phenotypic correlation coefficients among 
major agronomic traits measured in Greeley under 
irrigated and rainfed conditions are presented in Table 
3. Of these phenotypic correlation coefficients, about 45 
and 47% were significant under irrigated and rainfed 
conditions, respectively. However, only 8 and 4% of the 
phenotypic correlation values were ≥0.5 under irrigated 
and rainfed conditions, respectively. This shows weak 
interdependency among many traits measured in this 
study. Grain yield showed consistently high and positive 
phenotypic correlation with kernel number per square 
meter, spike number per square meter, and test weight 
regardless of the moisture level. Thousand kernel weight 
had significant and negative correlation coefficients with 
spike number per square meter and days to heading both 
under irrigated and rainfed conditions.

Sequence Diversity and Single Nucleotide 
Polymorphism–Trait Association Analyses
The amount of genetic variation at the DNA level can 
be assessed by the average of pairwise nucleotide differ-
ences among sequences from different individuals or by 
the number of segregating sites along the length of DNA 
sequences (Tajima, 1989). Therefore, in this study π, that 

is, the average number of pairwise nucleotide differ-
ences per site (Nei, 1987), per site estimates of diversity 
parameter (θ), and haplotype diversity for each gene were 
determined (Table 4). A total of 37 SNPs with minor allele 
frequency (MAF) greater than 5% was detected in the 126 
genotypes that were sequenced over a total length of 5038 
bp. This is roughly one SNP per 136 bp. Large differences 
were found among the candidate genes both in number 
of SNPs and nucleotide diversity parameters. The number 
of SNPs varied from one in 1-FEH-B to 16 in DREB1A. 
Similarly, the nucleotide diversity ranged from 0.00078 to 
0.18 for 1-FEH-B and DREB1A, respectively (Table 4). With 
the exception of DREB1A, the nucleotide diversity values 
obtained for the remaining four genes are within the range 
of nucleotide diversity values (0–0.003) reported for culti-
vated wheat by Haudry et al. (2007).

The effect of selection on the candidate genes was 
assessed using Tajima’s D statistics. The Tajima’s D test 
showed that there was significant difference between π 
and θ for ERA1-B, ERA1-D, 1-FEH-B, and DREB1A. This 
indicates a departure from the assumptions of a neutral 
model and that those genes are either under selection 
or undergoing population expansion after a severe 
bottleneck (Table 4). The negative sign of Tajima’s D for 

Table 2. Mean values and heritability estimates for 22 traits in a spring wheat association mapping panel 
(n = 126) evaluated in five environments.

Environments‡

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined
Trait† Mean Heritability Mean Heritability Mean Heritability Mean Heritability Mean Heritability Mean Heritability

YLD 2,179 0.60 1,528 0.43 1,301 0.40 4,420 0.68 3,904 0.61 2,690 0.61
TKW 35.45 0.74 21.37 0.31 25.11 0.51 25.53 0.65 22.6 0.65 25.97 0.81
TW 77.84 0.77 65.46 0.65 69.07 0.84 70.83
DH 67.24 0.83 69.96 0.72 68.29 0.69 54.92 0.89 55.68 0.93 63.23 0.75
DM 103.22 0.82 104.04 0.66 99.58 0.56 92.78 0.83 95.16 0.67 98.96 0.69
GFD 35.98 0.67 34.00 0.37 30.59 0.38 37.86 0.58 39.47 0.63 35.58 0.55
KN 6,368 0.55 7,319 0.31 5,304 0.32 17,610 0.68 17,296 0.48 10,795 0.45
HI 0.25 0.38 0.29 0.58 0.36 0.16 0.28 0.68 0.23 0.57 0.28 0.45
PHT 62.79 0.83 63.38 0.78 49.53 0.76 81.91 0.43 68.12 0.83
NDVI 0.67 0.28 0.4 0.49 0.27 0.32 0.45 0.62
BM 7,798 0.32 4,315 0.074 3,863 0.23 16,246 0.40 17,237 0.32 9,903 0.48
SPN 16.4 0.45 16 0.44 15.8 0.54 16.58 0.73 16.31 0.57
LL 15.84 0.66 15.41 0.45 12.17 0.61 20.179 0.28 22.22 0.46 17.12 0.72
LW 1.51 0.75 1.31 0.42 1.23 0.38 1.29 0.27 1.34 0.23 1.34 0.62
LS 5.43 0.76 7.75 0.44 6.59 0.73
KNS 34.96 0.26 38.69 0.11 38.71 0.38
KWS 1.24 0.28 0.84 0.11 0.97 0.19
SN 200.45 0.15 198.94 0.005 140.62 0.28
SL 9.33 8.89 0.83 8.73 0.60
KNL 2.12 0.26 2.41 0.14 2.38 0.28
SKD 2.87 0.12 2.53 0.79 2.56 0.78
SKW 35.46 0.75 25.71 0.77 27.08 0.75
†YLD, grain yield; TKW, thousand kernel weight; TW, test weight; DH, days to heading; DM, days to maturity; GFD, grain filling duration; KN, kernel number; HI, harvest index; PHT, plant height; NDVI, normalized 
difference vegetation index; BM, biomass; SPN, spikelet number; LL, flag leaf length; LW, flag leaf width; LA, flag leaf area; LS, leaf senescence; KNS, kernel number per spike; KWS, kernel weight per spike; SN, 
spikes number per square meter; SL, spike length; KNL, kernel number per spikelet; SKD, single kernel diameter; SKW, single kernel weight.
‡GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, Melkassa wet 2011; MLKD11, Melkassa dry 11.
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all candidate genes shows the accumulation of too many 
low frequency SNPs with respect to predictions of the 
neutral theory (Fusari et al., 2008; Giordani et al., 2011). 
However, the estimate of Tajima’s D was nonsignificant 
for the 1-FEH-A gene, indicating the absence of a 
selection footprint for this gene.

The candidate genes also differed in the extent of 
LD among SNPs. Although large numbers of SNPs were 
observed for ERA1-B and DREB1A, the percentages of 
significant pairwise comparisons among SNPs were 
higher for 1-FEH-A (40%) followed by ERA1-D (24%) as 
shown in Table 5. When the recombination rate is low, 
LD is extended over a large genetic distance and more 
SNPs in that range would show significant pairwise 
associations. Except for SNPs within 1-FEH-A, SNP 
pairs for other genes varied from weak LD to strong LD 
(Fig. 1, 2, 3, and 4) indicating the inconsistency of LD 

within a gene region. The LD decay curves were fitted 
for chromosomes 3A and 6A using 37 and 53 DArT 
markers, respectively. The LD decayed below r2 = 0.2 at 
approximately 3.69 cM for chromosome 3A, on which 
DREB1A is located, while LD decayed below r2 = 0.2 at 
2.27 cM for chromosome 6A, which harbors 1-FEH-A 
(Fig. 5 and 6).

The use of functional markers in marker-assisted 
plant breeding depends on the degree to which 
economically important traits are affected by a gene. 
The SNPs within DREB1A were associated with several 
traits, including final biomass, normalized vegetation 
index, days to heading, and spikelet number (Table 6). 
The percentage of phenotypic variation explained by 
those SNPs ranged from 6.4% for heading date to 9.7% 
for NDVI. In association mapping, a QTL that explains 
about 10% of the phenotypic variation can be considered 

Table 3. Phenotypic correlation coefficients among 17 traits in an association mapping panel (n = 126) evaluated 
at Greeley in 2011 under full irrigation (below diagonal) and moisture stress (above diagonal).

YLD† TKW DH LW LL DM HI PHT SPN BM TW NDVI GA KN SL KNS SN
YLD 0.22

*
–0.16

ns‡
–0.02

ns
0.04
ns

–0.04
ns

0.25
**

0.38
**

–0.16
ns

0.20
*

0.38
**

0.27
**

0.24
**

0.71
**

0.19
*

–0.07
ns

0.66
**

TKW 0.26
**

–0.31
**

0.20
*

0.22
*

0.03
ns

–0.01
ns

0.40
**

–0.17
ns

0.18
*

0.32
**

0.18
*

–0.02
ns

0.48
**

0.43
**

–0.24
**

–0.26
**

DH –0.27
**

–0.33
**

0.19
*

0.19
*

0.49
**

–0.10
ns

0.03
ns

0.07
ns

–0.07
ns

–0.03
ns

0.35
**

0.43
**

0.07
ns

–0.13
ns

0.17
ns

–0.01
ns

LW –0.06
ns

0.27
**

0.06
ns

0.66
**

0.24
**

–0.06
ns

0.27
**

0.06
ns

0.08
ns

0.06
ns

0.24
**

0.09
ns

–0.13
ns

0.25
**

0.06
ns

–0.13
ns

LL –0.02
ns

0.05
ns

–0.04
ns

0.65
**

0.23
**

–0.04
ns

0.32
**

–0.02
ns

0.05
ns

0.16
ns

0.31
**

0.20
*

–0.07
ns

0.25
**

0.08
ns

–0.09
ns

DM –0.06
ns

–0.10
ns

0.45
**

0.16
ns

–0.03
ns

–0.17
ns

0.22
*

–0.01
ns

0.03
ns

0.24
**

0.46
**

0.40
**

–0.09
**

0.20
*

–0.04
ns

–0.05
ns

HI 0.48
**

0.20
*

–0.35
**

–0.11
ns

–0.10
ns

–0.17
ns

–0.03
ns

0.11
ns

–0.52
**

0.21
*

–0.03
ns

0.02
ns

0.23
*

–0.11
Ns

0.05
ns

0.14
ns

PHT 0.28
**

0.06
ns

0.16
ns

0.25
**

0.36
**

0.08
ns

–0.15
ns

–0.19
*

0.25
**

0.29
**

0.41
**

0.23
**

0.07
ns

0.53
**

–0.12
ns

0.13
ns

SPN –0.10
ns

0.00
ns

0.06
ns

0.08
ns

–0.05
ns

0.01
ns

–0.16
ns

–0.12
ns

–0.07
ns

–0.13
ns

0.01
ns

0.03
ns

–0.04
ns

0.09
ns

0.58
**

–0.38
**

BM 0.28
**

0.07
ns

0.02
ns

0.02
ns

0.08
ns

0.12
ns

0.09
ns

0.23
**

0.08
ns

0.07
ns

0.09
ns

0.04
ns

0.04
ns

0.21
*

–0.01
ns

0.03
ns

TW 0.47
**

0.21
*

–0.21
*

0.04
ns

0.07
ns

–0.03
ns

0.4
**

0.15
ns

–0.11
ns

0.12
ns

0.33
**

0.24
**

0.11
ns

0.20
*

–0.12
ns

0.16
ns

NDVI 0.46
**

0.04
ns

0.22
*

0.05
ns

0.11
ns

0.28
**

0.01
ns

0.68
**

–0.15
ns

0.26
**

0.23
*

0.69
**

0.09
ns

0.27
**

0.02
ns

0.08
ns

GA 0.32
**

–0.12
ns

0.23
*

–0.09
ns

–0.07
ns

0.19
*

0.12
ns

0.29
**

–0.06
ns

0.26
**

0.17
ns

0.53
**

0.22
*

0.04
ns

0.04
ns

0.17
ns

KN 0.69
**

–0.46
**

–0.05
ns

–0.26
**

–0.05
ns

–0.02
ns

0.29
**

0.20
*

–0.08
ns

0.19
*

0.29
**

0.35
**

0.30
**

–0.13
ns

0.11
ns

0.81
**

SL –0.04
ns

0.21
*

0.06
ns

0.42
**

0.39
**

0.08
ns

–0.29
**

0.52
**

0.22
*

0.11
ns

–0.06
ns

0.24
**

–0.01
ns

–0.18
*

0.05
ns

–0.15
ns

KNS 0.10
ns

0.02
ns

–0.13
ns

–0.00
ns

–0.03
ns

–0.05
ns

0.10
ns

–0.26
**

0.41
**

–0.03
ns

0.09
ns

–0.14
ns

–0.07
ns

0.09
ns

–0.09
ns

0.05
ns

SN 0.39
**

–0.38
**

0.05
ns

–0.18
*

–0.03
ns

–0.04
ns

0.13
ns

0.28
**

–0.22
*

0.17
ns

0.15
ns

0.31
**

0.25
**

0.66
**

–0.02
ns

–0.58
**

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.
†YLD, grain yield; TKW, thousand kernel weight; DH, days to heading; LW, leaf width; LL, leaf length; DM, days to maturity; HI, harvest index; PHT, plant height; SPN, spikelet number; BM, biomass; TW, test 
weight; NDVI, normalized difference vegetation index; GA, green leaf area; KN, kernel number; SL, spike length; KNS, kernel number per spike; SN, spike number.
‡ns, nonsignificant.
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a major QTL according to definitions for QTL classes 
suggested by Flint-Garcia et al. (2005).

The SNPs within ERA1-B were associated with harvest 
index, spikes per square meter, and grain filling duration 
either in two environments or in one environment plus 
combined data across environments. In that gene, SNPs 
were associated in a single environment with plant height, 

leaf senescence, spike length, and leaf width. These SNPs 
explained the largest phenotypic variation in spike per 
square meter (11.3%) followed by flag leaf width (10.2%), 
grain filling duration (9.7%), and harvest index (9.3%). 
ERA1-D was also associated with the yield component 
traits kernel weight per spike, kernel number per spike, 
harvest index, flag leaf width, and leaf senescence. The 
majority of the SNP–trait associations for ERA1-D were 
obtained under rainfed conditions. Both ERA1-B and 
ERA1-D were associated with leaf senescence, harvest 
index, and flag leaf width (Table 6), suggesting the 
importance of ERA1 for drought tolerance in wheat, as 
some of these traits (e.g., delayed leaf senescence) are 
related to productivity under dry conditions. Manmathan 
et al. (2013) recently reported reduced stomatal 
conductance, increased water use efficiency, and better 
relative water content in wheat plants silenced for ERA1 
via virus induced gene silencing compared to the control.

The 1-FEH-A gene was associated with yield, kernel 
number per spike, spike length, NDVI, biomass, flag 
leaf length and area, and green leaf area index (Table 6). 
The SNPs in this gene explained the highest phenotypic 
variation for NDVI (9.8%) followed by flag leaf length 
(7.0%) and biomass (6.6%). Only a single SNP was 
detected for 1-FEH-B and this SNP was associated with 
days to maturity, kernel weight, test weight, and days to 
heading (Table 6). In genomewide association analysis 
with DArT markers for the complete panel described 
here (n = 294), we detected QTL on chromosome 6AS, 
where 1-FEH-A resides, for several traits, including 
thousand kernel weight, plant height, and flag leaf area 
and width. A previous biparental QTL mapping study 
detected QTL for stem water soluble carbohydrate, 
thousand kernel weight, and grain filling efficiency on 

Table 4. Summary of measures of nucleotide variability in sequences of five drought tolerance candidate gene.

Gene Sample number Length (bp) SNPs (MAF > 0.05)† Nucleotide diversity Theta per site Haplotype diversity Tajima’s D
DREB1A 126 971 16 0.180 0.392 0.948 –1.809*
ERA1-B 122 1410 8 (5 indels) 0.00094 0.0065 0.508 –2.649***
ERA1-D 121 1388 7 0.0023 0.011 0.826 –2.457***
1-FEH-A 126 601 5 0.00224 0.0035 0.45 –0.896 NS‡

1-FEH-B 124 668 1 0.00078 0.0049 0.153 –2.307***
*Significant at the 0.05 probability level.

***Significant at the 0.001 probability level.
†SNP, single nucleotide polymorphism; MAF, minor allele frequency (>0.05).
‡NS, nonsignificant.

Table 5. Linkage disequilibrium (LD) analysis of five drought tolerance candidate genes.

Gene
Number of pairwise 

comparisons
Number of significant pairwise comparisons 

(Fisher exact test, P < 0.01)
Percent of significant pairwise 

comparisons SNP pairs in complete LD†

DREB1A 121 17 14 None
ERA1-B 28 2 7 None
ERA1-D 21 5 24 None
1-FEH-A 10 4 40 3 (30%)
1-FEH-B – – – –
†SNP, single nucleotide polymorphism.

Figure 1. Patterns of linkage disequilibrium (LD) in pairwise 
combinations of single nucleotide polymorphisms in the DREB1A 
gene. The beginning of the sequence is at the lower left corner. 
Red color indicates a greater degree of LD.
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chromosome 6AS (Yang et al., 2007). Therefore, our 
results, supported by the previous study, suggest that 
1-FEH genes are associated with yield-related traits that 
are important in both irrigated and rainfed conditions.

Very few SNP–trait associations were detected for 
the Melkassa environments, and we are uncertain of the 
reason for this. One explanation may be the wide range 
of heading dates at that location (15 to 18 d), which may 
have confounded the effects of the candidate genes on 
the yield-related traits. Another factor is that the number 
of traits evaluated in Melkassa was less than the number 
evaluated in Greeley, so there were fewer opportunities to 
detect significant associations.

Discussion
Information on nucleotide diversity and SNP density 
is very rare for hexaploid wheat. To our knowledge, 
this study is the first report on nucleotide diversity for 
drought tolerance genes of hexaploid wheat.

Orthologous genes on homoeologous chromosomes 
showed differences in almost all diversity parameters 
considered here, including nucleotide diversity, 
haplotype diversity, Tajima’s D values, and LD patterns. 
ERA1-B and ERA1-D were amplified from homoeologous 
chromosomes on the B and D genomes of hexaploid 
wheat, respectively. However, ERA1-B is less diverse than 
ERA1-D based on these diversity parameters. This is an 
unexpected result because both the A and B genomes of 
wheat are more diverse than the D genome (Chao et al., 
2010) based on differences in LD decay rate among the 
genomes. In the current study also, the percentage of 
SNP pairs in LD for ERA1-D is higher than that of SNP 

pairs in LD for ERA1-B (Table 5). Similarly, 1-FEH-A 
is more diverse than 1-FEH-B, and the polymorphisms 
in the former are also in agreement with neutral 
expectation. Although the significance of Tajima’s D 
test may indicate the presence of selection footprints, 
this test may not provide complete information about 
the action of selection, as demographic processes such 

Figure 2. Patterns of linkage disequilibrium (LD) in the ERA1-B 
gene. The beginning of the sequence is at the lower left corner. 
Red color indicates a greater degree of LD.

Figure 3. Patterns of linkage disequilibrium (LD) in the ERA1-D 
gene. The beginning of the sequence is at the lower left corner. 
Red color indicates a greater degree of LD.

Figure 4. Patterns of linkage disequilibrium (LD) in the 1-FEH-A 
gene. The beginning of the sequence is at the lower left corner. 
Red color indicates a greater degree of LD.
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as population bottlenecks, recombination, population 
structure, and sample size can bias the results 
(Figueiredo et al., 2010). We are unable to compare 
the extent of LD between these genes as only one SNP 
showed MAF >5% for 1-FEH-B. However, 1-FEH-A had 
a higher number of SNP pairs with significant LD of all 
the candidate genes in this study.

The average number of SNPs within a gene varies 
depending on the species, region of a chromosome, 
and selection pressure. Although the SNP frequency is 
greatly gene dependent, the average of one SNP per 136 
bp obtained in this study is roughly in agreement with a 

previous report for wheat (Ravel et al., 2007). However, it 
is far less than SNP density reported for other crops such 
as maize (1 SNP per 104 bp), sorghum [Sorghum bicolor 
(L.) Moench] (1 SNP per 123 bp), sunflower (Helianthus 
annuus L.) (1 SNP per 69 bp), and rice (1 SNP per 113 
bp and 1 SNP per 100 bp) (Fusari et al., 2008). Although 
the SNP density of DREB1A is high compared to the 
remaining drought tolerance candidate genes in this 
study, the value of one SNP per 61 bp is within the range 
of the SNP densities reported for four transcription 
factors involved in barley (Hordeum vulgare L.) 
endosperm development, which ranged from one SNP 

Figure 5. Linkage disequilibrium decay curve for chromosome 3A based on 37 Diversity Array Technology markers.

Figure 6. Linkage disequilibrium decay curve for chromosome 6A based on 53 Diversity Array Technology markers.
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per 31 bp to one SNP per 74 bp (Haseneyer et al., 2010). 
The presence of low genetic diversity in hexaploid wheat 
is partly explained by low effective recombination, as 
wheat is highly self-pollinated. In addition to this, both 
domestication and modern breeding for high yield and 
disease resistance have reduced genetic diversity in wheat 
(Reif et al., 2005; Akhunov et al., 2010).

In the context of our current study, LD is a nonrandom 
association of polymorphic sites (SNPs) within a gene. 
Graphical displays of LD (Fig. 1, 2, 3, and 4) in terms of r2 
showed the patterns of association among polymorphic sites 
within all tested genes. The orthologous genes amplified 
from different genomes of hexaploid wheat showed different 
LD patterns. This information is useful in deciding how 
many functional markers need to be developed per gene, 
as the degree of associations of SNPs within a gene is 
different for different SNPs. The chromosomewide LD 
analysis with DArT markers also confirmed differences 
in the extent of LD among chromosomes harboring the 
candidate genes as expected. On average, LD decays faster 
for chromosome 6A than chromosome 3A, implying a 
better chance of tagging DREB1A with linked genomewide 
markers than the 1-FEH-A gene provided that there is no 
change in relationship of average LD decay rates around the 
two genes.

In this study we found that SNPs that reside within 
a few base pairs were associated with different traits. A 
potential weakness of genomewide QTL scanning is the 
possibility of overlooking SNPs at a locus that may be 
associated with a trait of interest, because QTL regions 
may not be represented with enough markers (Haseneyer 
et al., 2010).

Although previous reports indicated that the five 
drought tolerance candidate genes are stress induced 
and confer drought tolerance under stress conditions, 
SNP–trait associations were detected under both dry 
and irrigated conditions for all genes in this study. 
It is possible that even the trials grown under wetter 
conditions experienced some degree of moisture stress, 
thereby inducing expression of the evaluated genes. 
Most of the detected associations were significant only 
in a single environment, which is consistent with the 
high level of genotype × environment interaction that 
occurred in this study. Therefore, the advantage of 
these genes for yield or drought tolerance will depend 
on variable environmental conditions, as the genes 
may show different expression patterns in different 
environments (Wei et al., 2009; Mochida et al., 2003).

Several SNPs within drought tolerance candidate 
genes showed associations with yield and yield 
components and morphological and phenological traits. 
The genes explained substantial amounts of phenotypic 
variation for yield component traits (e.g., spikes m-2), 
morphological traits (e.g., flag leaf width), and drought 
tolerance-related indices (e.g., NDVI). However, before 
the SNPs identified in this study are converted into 
functional markers for use in breeding, confirmation of 
their benefits is needed.

Table 6. Marker–trait associations for single nucleotide 
polymorphisms (SNPs) within five drought tolerance 
candidate genes and phenotypic traits in individual 
environments and combined across environments.

Gene SNP name Trait Environments†
PFDR‡ R2 (%)§

DREB1A DREB1A_108 Spikelet number GRW10 0.0518 7.4
DREB1A_174 Days to heading Combined 0.054 7.5
DREB1A_252 Days to heading GRW10 0.085 6.9
DREB1A_252 Days to heading MLKW11 0.10 6.4
DREB1A_870 Final biomass GRD11 0.069 7.9

NDVI¶ GRW10 0.014 9.7
ERA1-B ERA1B_126 Plant height GRW10 0.067 5.6

ERA1B_AIN_172 Harvest index GRW111 0.0378 9.3
ERA1B_AIN_183 Flag leaf width MLKW11 0.0046 10.2
ERA1B_CIN_185 Harvest index GRW10 0.0599 5.0

Grain filling duration GRW10 0.0059 9.7
Grain filling duration Combined 0.044 7.14

Leaf senescence GRW10 0.029 6.6
Spike length GRW11 0.07024 5.2

ERA1B_932 Spikes per square meter Combined 0.0618 6.1
Spikes per square meter GRW10 0.003 11.3

ERA1-D ERA1D_235 Flag leaf width GRD11 0.0331 8.6
ERA1D_240 Kernel weight per spike GRD11 0.0259 6.7

Flag leaf width GRD11 0.093 3.6
ERA1D_241 Leaf senescence GRD11 0.044 6.3
ERA1D_1203 Kernel number per spike GRW10 0.048 8.8
ERA1D_1207 Flag leaf width GRW10 0.0487 6.45

Harvest index GRD11 0.102 4.8
1-FEH-A FEHA_127 Green leaf area GRD11 0.064 4.0

Flag leaf length GRW10 0.0091 7.3
Grain yield GRW10 0.072 5.8

Flag leaf length Combined 0.043 5.8
Flag leaf area GRW10 0.055 5.4

FEHA_145, 
FEHA_149,  

and FEHA_151

Spike length GRW10 0.026 4.7

FEHA_412 Green leaf area GRD11 0.064 4.2
NDVI GRW10 0.0034 9.8

Flag leaf length GRW10 0.0091 7.0
Final biomass GRW10 0.0132 6.6

Grain yield GRW10 0.0513 4.3
Kernel number per spike Combined 0.0546 4.5

NDVI Combined 0.079 5.0
1-FEH-B FEH-B-_561 Days to maturity GRD11 0.0064 5.3

Thousand kernel weight GRW11 0.034 3.7
Test weight GRW11 0.048 3.3

Days to heading MLKW11 0.041 4.2
†GRW10, Greeley wet 2010; GRW11, Greeley wet 2011; GRD11, Greeley dry 2011; MLKW11, 
Melkassa wet 2011.
‡pFDR, false discovery rate adjusted probability value.
§Percent phenotypic variance explained by the SNP.
¶NDVI, normalized difference vegetation index.
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In conclusion, gene sequence variability analysis 
of hexaploid wheat indicated the presence of sufficient 
polymorphic sites in the evaluated genes for development 
of functional markers. The homoeologous genes on 
different wheat genomes showed clear differences in 
nucleotide diversity, LD patterns, and associations of SNPs 
with phenotypic traits. Since gene copies on different 
homoeologous chromosomes showed different SNP–trait 
associations, the development of functional markers 
requires consideration of the economic importance of a 
trait and the amount of phenotypic variation explained 
by each gene copy. Future research on DREB1A, ERA1, 
and 1-FEH should validate the relative importance of the 
orthologous genes in different genetic backgrounds across 
a range of moisture conditions.

Supplemental Information Available
Supplemental material is available at http://www.crops.
org/publications/tpg.

Acknowledgments
We gratefully acknowledge support for this project and E. Edae’s graduate 
studies from Monsanto’s Beachell-Borlaug International Scholars 
Program. Technical assistance from Emily Hudson, Scott Reid, and 
Victoria Valdez is appreciated.

References
Akbari, M., P. Wenzl, V. Caig, J. Carling, L. Xia, S.Y. Yang, G. Uszynski, 

V. Mohler, A. Lehmensiek, H. Kuchel, M. J. Hayden, N. Howes, P. 
Sharp, P. Vaughan, B. Rathmell, E. Huttner, and A. Kilian. 2006. 
Diversity arrays technology (DArT) for high-throughput profiling 
of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409–1420. 
doi:10.1007/s00122-006-0365-4

Akhunov, E.D., A.R. Akhunova, O.D. Anderson, J.A. Anderson, N. Blak, 
M.T. Clegg, D. Coleman-Derr, E.J. Conley, C.C. Crossman, K.R. 
Deal, J. Dubcovsky, B.S. Gill, Y.Q. Gu, J. Hadam, H. Heo, N. Huo, 
G.R. Lazo, M. Luo, Y.Q. Ma, D.E. Matthews, P.E. McGuire, P.L. 
Morrel, C.O. Qualset, J. Renfro, D. Tabanao, L.E. Talbert, C. Tian, 
D.M. Toleno, M.L. Warburton, F.M. You, W. Zhang, and J. Dvorak. 
2010. Nucleotide diversity maps reveal variation in diversity 
among wheat genomes and chromosomes. BMC Genomics 11:702. 
doi:10.1186/1471-2164-11-702 

Andersen, J., and T. Lubberstedt. 2003. Functional markers in plants. 
Trends Plant Sci. 18:554–560. doi:10.1016/j.tplants.2003.09.010

Bagge, M., and T. Lubberstedt. 2008. Functional markers in wheat: 
Technical and economic aspects. Mol. Breed. 22:319–328. 
doi:10.1007/s11032-008-9190-6

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery 
rate: A practical and powerful approach to multiple testing. J. R. 
Stat. Soc., B 57:289–300.

Berloo, V.R. 2008. GGT2.0: Versatile software for visualization and 
analysis of genetic data. J. Hered. 99(2):232–236.

Bernardo, R. 1993. Estimation of coefficient of co-ancestry using 
molecular markers in maize. Theor. Appl. Genet. 85:1055–1062. 
doi:10.1007/BF00215047

Bhatnagar-Mathur, P., J.M. Devi, M. Lavanya, D.S. Reddy, V. Vadez, R. Serraj, 
K. Yamaguchi-Shinozaki, and K.K. Sharma. 2007. Stress-inducible 
expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) 
increases transpiration efficiency under water limiting conditions. Plant 
Cell Rep. 26:2071–2082. doi:10.1007/s00299-007-0406-8

Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss, and 
E.S. Buckler. 2007. TASSEL: Software for association mapping of 
complex traits in diverse samples. Bioinformatics 23:2633–2635. 
doi:10.1093/bioinformatics/btm308

Casadesus, J., Y. Kaya, J. Bort, M.M. Nachit, J.L. Araus, S. Amor, G. 
Ferrazzano, F. Maalouf, M. Maccaferri, V. Martos, H. Ouabbou, 

and D. Villegas. 2007. Using vegetation indices derived from 
conventional digital cameras as selection criteria for wheat breeding 
in water-limited environments. Ann. Appl. Biol. 150:227–236. 
doi:10.1111/j.1744-7348.2007.00116.x

Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, 
E. Francia, C. Mare, A. Tondelli, and A.M. Stanca. 2008. Drought 
tolerance improvement in crop plants: An integrated view from 
breeding to genomics. Field Crops Res. 105:1–14. doi:10.1016/j.
fcr.2007.07.004

Chao, S.M., J. Dubcovsky, J. Dvorak, M.C. Luo, P.S. Baenziger, R. 
Matnyazov, D.R. Clark, L.E. Talbert, J.A. Anderson, S. Dreisigacker, 
K. Glover, J.L. Chen, K. Campbell, P.L. Bruckner, J.C. Rudd, S. 
Haley, B.F. Carver, S. Perry, M.E. Sorrells, and E.D. Akhunov. 2010. 
Population- and genome-specific patterns of linkage disequilibrium 
and SNP variation in spring and winter wheat (Triticum aestivum 
L.). BMC Genomics 11:727. doi:10.1186/1471-2164-11-727

Cutler, S., M. Ghassemian, D. Bonetta, S. Cooney, and P. McCourt. 
1996. A protein farnesyl transferase involved in abscisic acid signal 
transduction in Arabidopsis. Science 273:1239–1241. doi:10.1126/
science.273.5279.1239

DNASTAR. 2008. Seqman genome assembler. DNASTAR Inc., Madison, WI.
Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number 

of clusters of individuals using the software STRUCTURE: A 
simulation study. Mol. Ecol. 14:2611–2620. doi:10.1111/j.1365-
294X.2005.02553.x

Figueiredo, A.F., B. Sine, J. Chantereau, C. Mestres, G. Fliedel, J.F. 
Rami, J.C. Glaszmann, M. Deu, and B. Courtois. 2010. Variability 
of grain quality in sorghum: Association with polymorphism in 
Sh2, Bt2, SssI, Ae1, Wx and O2. Theor. Appl. Genet. 121:1171–1185. 
doi:10.1007/s00122-010-1380-z

Flint-Garcia, S.A., A.C. Thuillet, J. Yu, G. Pressoir, S.M. Romero, S.E. 
Mitchell, J. Doebley, S. Kresovich, M.M. Goodman, and E.S. 
Buckler. 2005. Maize association population: A high-resolution 
platform for quantitative trait locus dissection. Plant J. 44:1054–
1064. doi:10.1111/j.1365-313X.2005.02591.x

Fusari, C., V. Lia, E. Hopp, R. Heinz, and N. Paniego. 2008. Identification 
of single nucleotide polymorphisms and analysis of linkage 
disequilibrium in sunflower elite inbred lines using the candidate 
gene approach. BMC Plant Biol. 8:7. doi:10.1186/1471-2229-8-7

Giordani, T., M. Buti, L. Natali, C. Pugliesi, F. Cattonaro, M. Morgante, 
and A. Cavallini. 2011. An analysis of sequence variability in 
eight genes putatively involved in drought response in sunflower 
(Helianthus annuus L.). Theor. Appl. Genet. 122:1039–1049. 
doi:10.1007/s00122-010-1509-0

Haseneyer, G., S. Stracke, H.P. Piepho, S. Sauer, H.H. Geiger, and A. 
Graner. 2010. DNA polymorphisms and haplotype patterns of 
transcription factors involved in barley endosperm development 
are associated with key agronomic traits. BMC Plant Biol. 10:5. 
doi:10.1186/1471-2229-10-5

Haudry, A., A. Cenci, C. Ravel, T. Bataillon, D. Brunel, C. Poncet, 
I. Hochu, S. Poirier, S. Santoni, S. Glémin, and J. David. 2007. 
Grinding up wheat: A massive loss of nucleotide diversity since 
domestication. Mol. Biol. Evol. 24:1506–1517. doi:10.1093/molbev/
msm077

Hincha, D.K., E. Zuther, and A.G. Heyer. 2003. The preservation of 
liposomes by raffinose family oligosaccharides during drying is 
mediated by effects on fusion and lipid phase transitions. Biochim. 
Biophys. Acta 1612:172–177. doi:10.1016/S0005-2736(03)00116-0

Kobayashi, F., M. Ishibashi, and S. Takumi. 2008. Transcriptional 
activation of Cor/Lea genes and increase in abiotic stress tolerance 
through expression of a wheat DREB2 homolog in transgenic 
tobacco. Transgenic Res. 17:755–767. doi:10.1007/s11248-007-9158-z

Langridge, P., and D. Fleury. 2011. Making the most of ‘omics’ for 
crop breeding. Trends Biotechnol. 29:33–40. doi:10.1016/j.
tibtech.2010.09.006

Latini, A., C. Rasi, M. Sperandei, C. Cantale, M. Lannetta, M. Dettori, K. 
Ammar, and P. Galeffi. 2007. Identification of a DREB-related gene 
in Triticum durum and its expression under stress conditions. Ann. 
Appl. Biol. 150:187–195. doi:10.1111/j.1744-7348.2007.00128.x



edae et al.: drought tolerance candidate genes in spring wheat 	 13 of 13

Lopes, M.S., and M.P. Reynolds. 2012. Stay-green in spring wheat can 
be determined by spectral reflectance measurements (normalized 
difference vegetation index) independently from phenology. J. Exp. 
Bot. 63:3789–3798. doi:10.1093/Jxb/Ers071

Lopes, M., M.P. Reynolds, M. Jalal-Kamali, M. Mousa, Y. Feltaous, I. 
Tahir, N. Barma, and M. Vargas. 2012. The yield correlations of 
selectable physiological traits in a population of advanced spring 
wheat lines grown in warm and drought environments. Field Crops 
Res. 128:129–136. doi:10.1016/j.fcr.2011.12.017

Lothier, J., B. Lasseur, K. Le Roy, A. Van Laere, M. Prud’homme, P. Barre, 
W. Van Den Ende, and A. Morvan-Bertrand. 2007. Cloning, gene 
mapping, and Functional analysis of a fructan 1-exohydrolase 
(1-FEH) from Lolium perenne implicated in fructan synthesis rather 
than in fructan mobilization. J. Exp. Bot. 58:1969–1983. doi:10.1093/
jxb/erm053

Manmathan, H., D. Shaner, J. Snelling, N. Tisserat, and N. Lapitan. 
2013. Virus-induced gene silencing of Arabidopsis thaliana gene 
homologues in wheat identifies genes conferring improved drought 
tolerance. J. Exp. Bot. 64:1381–1392. doi:10.1093/jxb/ert003

Martinez-Gonzalez, S.C., D. Huber, E. Ersoz, J.M. Davis, and D.B. Neale. 
2008. Association genetics in Pinus taeda L. II. Carbon isotope 
discrimination. Heredity 101:19–26. doi:10.1038/hdy.2008.21

McCouch, S., K. Zhao, M. Wright, C. Tung, K. Ebana, M. Thomson, A. 
Reynolds, D. Wang, G. DeClerck, M. Ali, A. McClung, G. Eizenga, 
and C. Bustamante. 2010. Development of genome-wide SNP assays 
for rice. Breed. Sci. 60:524–535. doi:10.1270/jsbbs.60.524

Mochida, K., Y. Yamazaki, and Y. Ogihara. 2003. Discrimination of 
homoeologous gene expression in hexaploid wheat by SNP analysis 
of contigs grouped from a large number of expressed sequence tags. 
Mol. Genet. Genomics 270:371–377. doi:10.1007/s00438-003-0939-7

Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. Press, 
New York, NY.

Pei, Z.M., M. Ghassemian, C.M. Kwak, P. McCourt, and J.I. Schroeder. 
1998. Role of famesyltransferase in ABA regulation of guard 
cell anion channels and plant water loss. Science 282:287–290. 
doi:10.1126/science.282.5387.287

Pellegrineschi, A., M. Reynolds, M. Pacheco, R.M. Brito, R. Ameraya, K.Y. 
Shinozaki, and D. Hoisington. 2004. Stress-induced expression in 
wheat of the A. thaliana DREB1A gene delays water stress symptoms 
under greenhouse conditions. Genomics 47:493–500.

Pritchard, J., M. Stephens, and P. Donnelly. 2000. Inference of population 
structure using multilocus genotype data. Genetics 155:945–959.

Rafalski, A. 2002. Novel genetic mapping tools in plants: SNPs and 
LD-based approaches. Plant Sci. 162:329–333. doi:10.1016/S0168-
9452(01)00587-8

Ravel, C., S. Praud, A. Canaguier, P. Dufour, S. Giancola, F. Balfourier, 
B. Chalhoub, D. Brunel, L. Linossier, M. Dardevet, M. Beckert, 
M. Rousset, A. Murigneux, and G. Charmet. 2007. DNA sequence 
polymorphisms and their application to bread wheat quality. 
Euphytica 158:331–336. doi:10.1007/s10681-006-9288-z

Reif, J.C., P. Zhang, S. Dreisigacker, M.L. Warburton, M. van Ginkel, D. 
Hoisington, M. Bohn, and A.E. Melchinger. 2005. Wheat genetic 
diversity trends during domestication and breeding. Theor. Appl. 
Genet. 110:859–864. doi:10.1007/s00122-004-1881-8

Rozas, J., P. Librado, J.C. Sánchez-DelBarrio, X. Messeguer, and R. Rozas. 
1999. DnaSP version 5: An integrated program for population 
genetics and molecular evolution analysis. Bioinformatics 15:174–
175. doi:10.1093/bioinformatics/15.2.174

Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general 
users and for biologist programmers. In: S. Krawetz and S. Misener, 
editors, Bioinformatics methods and protocols. Humana Press, 
Totowa, NJ. p. 365–386.

Saint Pierre, C., J. Crossa, D. Bonnet, K. Yamaguchi-Shinozaki, and 
M. Reynolds. 2012. Phenotyping transgenic wheat for drought 
resistance. J. Exp. Bot. 63:1799–1808. doi:10.1093/jxb/err385

SAS Institute. 2006. SAS for mixed models. SAS Inst., Cary, NC.
SAS Institute. 2011. The SAS system for Windows. Version 9.3. SAS Inst., 

Cary, NC.
Shinozaki, K., and K. Yamaguchi-Shinozaki. 2007. Gene networks 

involved in drought stress response and tolerance. J. Exp. Bot. 
58:221–227. doi:10.1093/jxb/erl164

Tajima, F. 1989. Statistical method for testing the neutral mutation 
hypothesis by DNA polymorphism. Genetics 123:585–595.

Vadez, V., J.S. Rao, P. Bhatnagar-Mathur, and K.K. Sharma. 2013. 
DREB1A promotes root development in deep soil layers and 
increases water extraction under water stress in groundnut. Plant 
Biol. 15:45–52. doi:10.1111/j.1438-8677.2012.00588.x

Vadez, V., S. Rao, K.K. Sharma, P. Bhatnagar-Mathur, and M.J. Devi. 
2007. DREB1A allows for more water uptake in groundnut by a large 
modification in the root/shoot ratio under water deficit. Int. Arachis 
Newsl. 27:27–31.

VSN International. 2005. CycDesigN 3.0. VSN International Ltd., Hemel 
Hempstead, UK.

Wei, B., R. Jing, C. Wang, J. Chen, X. Mao, X. Chang, and J. Jia. 2009. 
Dreb1 genes in wheat (Triticum aestivum L.): Development of 
functional markers and gene mapping based on SNPs. Mol. Breed. 
23:13–22. doi:10.1007/s11032-008-9209-z

Yang, D., R. Jing, X. Chang, and W. Li. 2007. Identification of quantitative 
trait loci and environmental interactions for accumulation 
and remobilization of water-soluble carbohydrates in wheat 
(Triticum aestivum L.) stems. Genetics 176:571–584. doi:10.1534/
genetics.106.068361

Yu, J.M., G. Pressoir, W.H. Briggs, I.V. Bi, M. Yamasaki, J.F. Doebley, M.D. 
McMullen, B.S. Gaut, D.M. Nielsen, J.B. Holland, S. Kresovich, and 
E.S. Buckler. 2006. A unified mixed-model method for association 
mapping that accounts for multiple levels of relatedness. Nat. Genet. 
38:203–208. doi:10.1038/Ng1702

Zhang, J., S. Huang, J. Fosu-Nyarko, B. Dell, M. McNeil, I. Waters, P. 
Moolhuijzen, E. Conocono, and R. Appels. 2008. The genome 
structure of the 1-FEH genes in wheat (Triticum aestivum L.): New 
markers to track stem carbohydrates and grain filling QTLs in 
breeding. Mol. Breed. 22:339–351. doi:10.1007/s11032-008-9179-1

Ziegelhoffer, E., J. Leonard, and M. Elliot. 2000. Cloning of the 
Arabidopsis WIGGUM gene identifies a role for farnesylation in 
meristem development. Proc. Natl. Acad. Sci. USA 97:7633–7638. 
doi:10.1073/pnas.130189397


