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A B S T R A C T

Near-infrared (NIR) diffuse reflectance has been extensively and successfully applied on quality assurance
for fruits, vegetables, and food products. This study is principally aimed to extract the primary
wavelengths related to the prediction of glucose and sucrose for potato tubers (of Frito Lay 1879 (FL), a
chipping cultivar, and Russet Norkotah (RN), a table use cultivar, and investigating the potential of
classification of potatoes based on sugar levels important to the frying industry. Whole tubers, as well as
12.7mm slices, were scanned using a NIR reflectance spectroscopic system (900–1685nm). To extract the
most influential wavelength in the studied range, interval partial least squares (IPLS), and genetic
algorithm (GA) were utilized. Partial least squares regression (PLSR) was applied for building prediction
models. Prediction models for RN showed stronger correlation than FL with r(RPD) (correlation
coefficient (ratio of reference standard deviation to root mean square error of the model)) values for
whole tubers for glucose being as high as 0.81(1.70), and 0.97(3.91) for FL and RN; in the case of sliced
samples the values were 0.74(1.49) and 0.94(2.73) for FL and RN. Lower correlation was obtained for
sucrose with r(RPD) for whole tubers as high as 0.75(1.52), 0.92(2.57) for FL and RN; and the values for
sliced samples were 0.67(1.31) and 0.75(1.41) for FL and RN respectively. Classification of potatoes based
on sugar levels was conducted and training models were built using different classifiers (linear
discriminant analysis (LDA), K-nearest neighbor (Knn), partial least squares discriminant analysis
(PLSDA), and artificial neural network (ANN)), in addition to classifier fusion. To obtain more robust
classification models for the training data, 4-fold cross validationwas used and results were tested using
separate sets of data. Classification rates of the testing set for whole tubers, based on glucose, were as
high as 81% and 100% for FL and RN. For sliced samples, the rates were 83% and 81% for FL and RN.
Generally, lower classification rates were obtained based on sucrose with values of whole tubers of 71%,
and 79% for FL and RN, and for sliced samples the rateswere 75%, and 82%which follows a similar trend as
PLSR results. This study presents a potential of using selected wavelengths and NIR reflectance
spectroscopy to effectively evaluate the sugar content of potatoes and classify potatoes based on
thresholds that are crucial for the frying industry.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Potato is an important crop in developed and developing
countries for human diet as a source of carbohydrates, protein, and
vitamins (C, and B9) (Navarre et al., 2009). Processed potato
products (French fries, chips, dehydrated, sliced, etc.) dominate the
use of potatoes in developed countries. The US potato production
for 2012 was 23.5 million metric ton, 61.1% used for processing,
25.7% used as table or fresh tubers, 5% used as seeds, and less than

1% were used for livestock feed (USDA-NASS, 2013). Among
processed potato products, 8.46, and 6.11 million metric tons were
used by French fries, and chips in 2012.

Quality of chips, and French fries drastically depend on several
factors including dry matter that is strongly related to starch
content, and specific gravity (Storey, 2007; Stark and Love, 2003;
Storey and Davis, 1992). In addition, sugar content significantly
determines the internal and/or external quality attributes of fried
products. Glucose, and fructose are the major monosaccharide
sugars in potato tubers with a concentration of 0.15–1.5%, and
either one is considered a reducing sugar. Sucrose (0.4–6.6%) is a
non-reducing disaccharide (Storey, 2007).

Sugar content of potato tubers varies between cultivars, and
during storage time. Consequently, managing and monitoring
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sugar levels are crucial steps for tubers dedicated for processing.
Excess levels of reducing sugars cause unacceptable non-enzy-
matic browning color for fried products due to the reaction
between the reducing sugars and the a-amino groups of amino
acids which is known as the Maillard reaction (Schallenberger
et al., 1959). Maximum reducing sugar levels in potatoes for
processing are 0.2–0.3% for chips, and 0.3–0.5% for French fries
(Storey, 2007). More precise thresholds were stated by Stark, et al.
(2003), as of 0.035% and 0.12% for chips, and French fries. Moreover,
higher levels of sucrose cause sweetening flavor for fried products
and boiled tubers. Such unacceptable sucrose levels are associated
with low storage temperatures, and long storage periods (Storey,
2007; Blenkinsop et al., 2002). Maximum accepted sucrose level
for processing at harvest is 0.15% for chips, or French fries, and the
levels in storage are 0.15% and 0.10% for chips, and French fries
respectively (Stark et al., 2003). Other studies recommended
different sugars’ thresholds for processing (Kadam et al., 1991;
Smith and Davis, 1968).

Near-infrared spectroscopy (NIRS) has become a promising
technology that has been extensively applied in quality control and
monitoring in chemical, petrochemical, pharmaceutical, agricul-
tural, and food industries. According to Burns and Ciurczak (2001),
the use of NIR diffuse reflection for quantitative analysis of
biological products is widely applicable. In the reflectance mode,
the incident light penetrates the sample surface and a portion of
such light passes within the sample tissue and is then reflected
back, known as diffuse reflectance, and detected with information
about the internal composition of the tubers (Chen, 1978). As a
rapid, and/or noninvasive method, NIRS is suitable for on-line
applications with it being less time consuming, more robust, more
reproducible, and more cost effective than human labor or other
laboratory destructive methods used for quality assurance
purposes. Fruits and vegetables, as high moisture products and
having a relatively large size, were not initially suitable for NIRS
applications. After development of high performance hardware,
quality measurements of intact fruits and vegetables using NIRS
were made possible with interactance and transmission modes
(Kawano, 2002). NIRS interactance was developed in a USDA
laboratory at Beltsville by Conway et al. (1984), to measure human
body fat. Later, the practice of NIR interactance in the agricultural
field became more intensive.

Several studies were conducted for measuring sugars in
potatoes using NIRS. Mehrubeoglu and Cote (1997), conducted a
study to build calibration models for total reducing sugars for a
Russet variety and a chipping variety. NIR transmittance (2050–
2400nm) was applied on sliced samples. The best PLSR calibration
model was obtained using the cross validation technique, bywhich
the coefficient of correlation r(root mean square error of
calibration) for correlation model or r(RMSEC) values for the
Russet variety were 0.77(0.0387%), and for the chipping variety the
values were 0.80(0.0173). When merging both cultivars’ data, the r
(RMSEC) values were 0.52(0.040%). Hartmann and Büning-Pfaue,
(1998), used the NIR diffuse reflectance (1100–2500nm) mode to
measure fructose, glucose, sucrose, total reducing sugars, starch,
and crude protein in potatoes (homogenized samples). Using
partial least squares regression (PLSR), the cross-validated models
for starch, crude protein, glucose, fructose, sucrose, and the total
reducing sugars resulted in r(root mean square error of prediction)
or r(RMSEP) values of 0.96(0.28%), 0.93(0.06%), 0.84(0.041%), 0.94
(0.028%), 0.79(0.037%), and 0.91(0.061%) respectively. Other
studies were utilized to estimate sugars in potatoes using
VIS/NIR interactance (400–1000nm) by Yaptenco et al. (2000),
VIS/NIR interactance (400–1100nm) by Chen et al. (2010), and NIR
reflectance (850–2500nm) by Haase (2011). While the previous
studies provided good prediction performance, most did not
include separate prediction data sets and did not include whole

tubers for measurements. They also included sampling methods
that required longer time thanworkingwithwhole tubers or sliced
samples that require relatively short preparation time.

Sorting of fruits and vegetables based on internal constituents is
still a relatively new, and open point of research. Specific gravity
and dry matter were used to indirectly recognize hollow heart
infected tubers by Kang et al. (2008), based on the fact that low
specific gravity tubers are more likely infected. Visible/near-
infrared or VIS/NIR transmittance measurements (650–1000nm)
were acquired and PLSR calibration for specific gravity had
r(RMSEP) values 0.87(0.0045%) and those values were 0.83
(0.0050) for prediction. Using dry matter to detect hollow heart
based on the same principal as specific gravity, r(RMSEP) values for
calibration model were 0.83(0.0062%) and for validation 0.80
(0.0067%). However, developing an on-line system for discarding
tubers with higher sugar content than the allowable levels is not
yet conducted.

Current technologies for measuring sugars in potatoes include:
HPLC (high performance liquid chromatography), HPAEC (high
performance anion chromatography), gas–liquid chromatography,
and the YSI Analyzer that was invented by Yellow Springs
Instruments (Yellow Springs Instrument, Yellow Springs, Ohio,
USA). While these techniques provide acceptable accuracy for
industry, they are destructive, time consuming, and are conse-
quently not suitable for rapid monitoring or on-line sorting
applications.

The proposed objectives of this study were to:

1. Apply NIR diffuse reflectance spectroscopy along with variable
selection techniques to extract the wavelengths in the range
(900–1965nm) associated with best predicting glucose and
sucrose in potatoes.

2. Develop calibration and prediction models of glucose and
sucrose in potatoes using NIR diffuse reflectance spectroscopy
based on the selected wavelengths.

3. Build classificationmodels of potatoes based on sugar levels that
are critical to chipping and French frying industries.

2. Materials and methods

2.1. Raw materials and sample preparation

Experiments were conducted in 2009 and 2011, and in both
seasons, two common cultivarswere used in the experiments, Frito
Lay 1879 (FL) as a chipping cultivar, and Russet Norkotah (RN)
which is usually used for baking. In the 2009 season, cultivars were
hand-harvested from two locations; a research farm at Montcalm,
MI. (sandy soil) for RN and FL, and additionally the MSU Muck
experimental farm, Bath, MI. for FL. Samples were stored in three
temperatures of 4, 7, and 10 �C. Tubers were thenmonthly sampled
for experimentation starting in November, 2009 until April, 2010
(except at March) with a total number of 540 tubers from FL and
180 tubers from RN. In the 2011 season, both cultivars were
obtained from a commercial production field (sandy soil) in
Southwest Michigan. Two more storage temperatures (1 �C, and
13 �C) were added in order to obtain more uniform sugar
distribution and simulate the various uses of potato tubers. In
general, lower storage temperature is desired for cultivars that are
used as seeds or for cooking, while relatively higher temperatures
are used for chip cultivars. Tubers were first stored at 4 �C for three
weeks and an initial electronic measurement was conducted.
Tuberswere then distributed over five different cold storage rooms
with the following temperatures: 1, 4, 7, 10, and 13 �C. They were
then sampled for experimentation starting in November 2011, and
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eachmonth until May 2012 (except at April) with a total number of
195 tubers from FL, and 75 tubers from RN.

In both seasons, tubers were cleaned prior to the imaging, and
any defective samples were discarded. Several vine killing and
harvest dates, different locations, and storing at different temper-
atures were used to obtain broad, and uniform, sugar distribution,
rather than evaluating the growing condition, and other pre- and
post-harvest practices that were conducted on tubers. Conse-
quently, results representing different locations for FL were not
compared.

Two types of samples were utilized for the electronic measure-
ments: whole tubers, and a 12.7mm thick slice which was
obtained by cutting in a direction that is perpendicular to its
longitudinal axis, starting from the stem end of the tuber. The
tested slice was the third slice in the cutting routine. Each whole
tuber was scanned only once, whereas each slice was scanned on
both sides with each scan representing a sample measurement.
The number of samples in the 2009 season was then 540, and
180 for FL, and RN in the case of whole tubers, and 1080, and
360 for FL, and RN in the case of sliced samples. In the 2011 season,
there were 195 and 75 whole tubers for FL, and RN, whereas there
were 390 and 150 sliced samples for FL, and RN respectively.

2.2. Wet chemistry experiments

After electronically scanning whole tubers, sliced samples were
obtained as described in Section 2.1, and scanned. Each sliced
sample was then immediately transferred into a plastic bag and
placed in a foam box containing ice to maintain its freshness, and
minimize any chemical deterioration during scanning the remain-
ing samples. To ensure consistency between the slice electronic
and wet chemistry measurements, a sufficient amount of potato
tuber juice from the specific areas that had already been
electronically tested was obtained by using a 25.4mm cylindrical
metal core borer to extract tissue primarily from the middle of the
slice. This tissue was then put in a pre-sterilized 0.1985 kg Whirl–
Pak filter bag, 9.5�18 cm (Nasco, Fort Atkinson, Wisconsin, USA).
The bag was then hammered by hand using a 0.907kg weight for
juicing and then homogenized using a stomacher for 1min. The
juicewas filtered by theWhirl–Pak filter bag and transferredwith a
pipette to a polystyrene tube with cap. This juice was stored at

�20 �C to reduce any variation of constituents and allow
subsequent use and analysis of the juice at a later time.

The enzymatic approach is a common technique for measuring
carbohydrates in agricultural products (BeMiller, 2010). Using the
Megazyme sucrose/D-glucose assay procedure (Megazyme Inter-
national Ireland Ltd Wicklow, Ireland), the concentrations of
glucose and sucrose in the extracted juice, expressed as gram per
gram fresh tuber weight or percentage, were measured as
explained in Rady et al. (2014), using the following equations:

D� Glucose ¼ DA� F � 0:005� 0:1 (1)

Sucrose ¼ ðDB�DAÞ � F � DL� 0:0095� 0:1 (2)

Where:
D-Glucose: concentration of glucose (%).
Sucrose: concentration of sucrose (%).
DA: GOPOD (glucose oxidase/peroxidase) absorbance forD-

glucose.
DB: GOPOD absorbance for sucrose.
F: factor to convert from absorbance tomg of D-glucose (nm�1).

F is calculated as follow:

F ¼ 100
absorbance of the control sample

:

The control sample is prepared using the D-glucose standard
solution provided with the Megazyme assay kit.

DL: Dilution ratio, 1 in case of Frito Lay 1879 and 10 in case of
Russet Norkotah.

0.1: Unit conversion factor for glucose and sucrose to convert
from g/L into %.

During the wet chemistry experiments, each tuber had
2 replicates, so each replicate was assigned to a slice side, while
each whole tuber had the average value of both replicates.

2.3. NIR reflectance system

The NIR diffuse reflectance system used in this study is
represented bya schematic diagram in Fig.1. The light source probe
tip and the detector tip were approximately 3 cm from the sample
upper surface. An InGaAs spectrometer (model no. NIR512L-1.7T1,

[(Fig._1)TD$FIG]

Fig. 1. Schematic representation of NIR reflectance system utilized in the study.
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Control Development Inc. South Bend, IN, USA) with spectral
resolution of 3.25nm FWHM and linear dispersion of 1.625nm/
pixel was used in the reflectance mode, in the wavelength range of
900–1685nm alongwith an Oriel radiometric power supplywith a
300W maximum power (model no. 68931, Oriel Inst., Irvine, CA,
USA), and an Oriel light source (model no. 66881, Oriel Inst., Irvine,
CA, USA) having 250W maximum power, and with a quartz
tungsten halogen lamp. In the diffuse reflectance experiments, the
sample area covered by the light source had a diameter of 25.5mm.
The integration timewas set as 4ms, and each measurement is the
average of 4 individual measurements. The incident light was
directed on the middle area of the cut side of the slice. For the
whole tubers, the light was directed on the surface approximately
in the center area where the longitudinal, and perpendicular axes
intersect. The detector covers an area on the sample surface of
12.7mm diameter. Each sample spectrum was normalized using
Teflon1 as a reference material, and the calculation of the relative
reflectance was done using the following equation:

Relative reflectance ¼ Is � Ib
Ir � Ib

(3)

Where
Is: intensity of reflected light for sample.
Ir: intensity of reflected light for reference (Teflon1).
Ib: intensity of reflected light for background.

2.4. Data analysis

2.4.1. Partial least squares regression (PLSR)
Partial least squares regression (PLSR) SIMPLS algorithm,

presented by De Jong (1993), was applied in this study for
building calibration and prediction models. To reduce the noise
resulting from various sources, it is often advisable to pretreat
spectroscopic data before building a calibration model (Varmuza
and Filzmoser, 2009; Christy and Kvalhiem, 2007; Martens and
Naes, 2001; Wold et al., 2001; Bjørsvik and Martens, 2001) and
thus, two stages of preprocessing were implemented in this study
for the spectral data. The first stage was the primary processing,
which included separate evaluations of no-preprocessing, weight-
ed baseline, smoothing with first derivative, smoothing with
second derivative, normalization, standard normal deviate (SNV)
correction, multiplicative signal correction (MSC), and median
center. After these first stage preprocessing methods (tried
separately), further preprocessing was applied to the spectral
data during the PLSR algorithm development (Eigenvector
Research, Inc. WA, USA), which included mean center or
orthogonal signal correction (osc) (Wise et al., 2006).

Transformation of the reference data was also conducted to get
the constituents’ distribution as uniform as possible, which helps
avoid overfitting in predictionmodels especiallywith the relatively
low number of samples (Bjørsvik and Martens, 2001). Such
transformations included the log and power transformation, with
2.0 as the exponent, in addition to using the non-transformed data,
to study the effect of constituent value transformation.

Calibration and prediction sets of data were formed such that
the calibration set contained 75% of the data and the prediction set
contained 25% of the data. Cross validation (4-fold) was then
applied on the calibration set of data to obtain the best calibration
model based on theminimumvalue of root mean square of error of
calibration using cross validation (RMSECcv) and the calibration
model was subsequently applied to the separate prediction set to
evaluate the model performance. It should be noted that the
configuration of PLSRmodels was based on preliminary analysis to
obtain the best prediction performance. The best prediction
models have been selected based on the values of RMSEP, RPD,
and the number of the latent variables (LVs).

2.4.2. Wavelengths selection
Interval partial least squares (IPLS) and genetic algorithm (GA)

were applied in this study as wavelength selection techniques
commonly used in the case of relatively high dimension data (i.e.
spectroscopic data) to improve correlation robustness and
computation time without considerable decrease in performance
(Heise and Winzenm, 2002; Mark, 2001). Configurations of both
IPLS and GA used in this study were based on preliminary results
(not shown). The IPLS method is a known variable selection
method for spectroscopic data and for optimizing the performance
of PLSR models. IPLS uses sequential (either forward, backward or
both) and exhaustive methods of search for the best subset of
variables and different windowwidth values (number of variables
perwindow). In this research, forwardmode, windowwidth of 1, 2,
and 3 variables, and number of latent variable for the PLSR model
being 20, were used.

In the genetic algorithm (GA) technique, the RMSECCV was used
as a model fitness scale, and window width of 1 variable, double
crossover, maximum number of generations of 300, maximum
number of latent variables of 20, and three iterations were used to
obtain the wavelengths associated with best correlation between
spectra, and reference values. More details regarding IPLS, and GA
can be found in Leardi and Nørgaard, (2004); and Westad et al.
(2013).

2.4.3. Classification of potatoes based on sugar levels
Classification of sliced samples andwhole tubers based on sugar

levels was conducted using several techniques. Linear discriminant
analysis (LDA), K-nearest neighbor (Knn), partial least squares
discriminant analysis (PLSDA), and artificial neural networks (ANN)
were individually applied. Euclidean, as well as mahanalobis
distances, were used in the current study for assigning each sample
to the appropriate class. Prior to LDA classification, principal
componentanalysiswasconductedonthe spectraldata toovercome
the problem of colinearity associated with spectroscopic measure-
ments. To sustain the variance between samples, the first
20 components, responsible for >99% of the total variance, were
used for classification task. In the case of Knn PLSDA and ANN,
spectraldata containing theselectedwavelengths resulted fromIPLS
(windowwidth orW =1) were used. In the case of the Knnmethod,
the Euclidean distance, and k values of 3 and 5were selected based
onpreliminaryanalysis. Sampleswere then classified to the nearest
class or to the class having the majority vote (Bishop, 2007; Duda
et al., 2001). PLSDA has the advantages, as in PLSR, of colinearity
tolerance andnoise reduction (Wise et al., 2006). ANNclassification
was based on the feed forward neural network with back
propagation (FFNN), commonly used in classification tasks, and

Table 1
Statistical summary of glucose (GL) and sucrose (SU) measurements based on wet
chemistry for Frito Lay 1879 and Russet Norkotah cultivars in the 2009 and
2011 seasons.

Season Statistics FLGL (%) FLSU (%) RNGL (%) RNSU (%)

2009 Minimum 0.0028 9.1e�5 0.0031 0.0045
Maximum 0.1514 0.1607 0.3574 0.4205
Mean 0.0457 0.0330 0.0591 0.10253
Median 0.0391 0.0275 0.0338 0.0836
Standard Deviation 0.0281 0.0239 0.0688 0.0806
Skewness 1.4003 2.819 2.0412 1.2472
Kurtosis 6.1725 17.1841 6.0141 4.6476

2011 Minimum 0.0224 7e�5 0.1544 3e�4
Maximum 0.2394 0.4107 1.1355 2.1842
Mean 0.0951 0.0765 0.5296 0.3012
Median 0.0874 0.0605 0.5411 0.1760
Standard Deviation 0.0470 0.0685 0.1926 0.3475
Skewness 0.9401 1.5135 0.2741 2.2217
Kurtosis 3.3262 5.6421 3.0054 9.8636
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consistedof an input layer containing thepretreated spectral data, a
hidden layer with 50 neurons chosen based on results obtained
from preliminary analysis, and an output layer that contained the
assigned class. Transfer functions were chosen as log-sigmoid, and
scaled conjugate gradient back propagation for hidden and output
layers respectively.

Spectral and reference data were preprocessed as mentioned in
Section 2.4.1. In this study, samples were divided into a training set
(80%), and a testing set (20%). A 4-fold cross validation technique
was conducted on the training set to increase the robustness of the
training models for all classification methods. Samples in both
seasons were divided into two classes based on the cut-off glucose
values in the 2009 season of 0.035% for both FL and RN, whereas
the values for sucrose were 0.03% and 0.10%. In the 2011 season,
and based on sugar distribution, the threshold values for glucose
were 0.09% and 0.5% for FL and RN, while the values for sucrose
were 0.08% and 0.15%. Cut-off levels were adopted from
recommended thresholds listed by Stark and Love (2003), for

both sugars except for the glucose level for RNwhichwas chosen to
create two balanced classes. Classification of samples using LDA
and ANN was conducted using the Matlab1 statistical toolbox. For
Knn and PLSDA, the classification toolbox for Matlab created by
Davide Ballabio (Milano Chemometrics and QSAR Research Group,
University of Milano-Bicocca, Milan, Italy) was used, and the PLS
routine used to compute PLSDA was written by Frans W.J. van den
Berg (Quality & Technology group, section Spectroscopy and
Chemometrics, Department of Food Science, University of Copen-
hagen, Denmark).

Classifier fusion was also conducted in attempt to increase the
overall classification accuracy. Weighted majority voting was used
for setting each sample in the correct class. In majority voting,
based on results obtained from individual classifiers, PLSDA was
given the highest weight of 0.40, and weights of 0.20, 0.10, and
0.15 were given to LDA, and Knn and ANN respectively. Each
sample was assigned to the class having the highest total voting
resulted from all classifiers.

[(Fig._2)TD$FIG]

Fig. 2. Signals of absorbance (log(1/reflectance)) of 2009 season data for sliced samples of (a) Frito Lay 1879, (b) Russet Norkotah, and whole tubers of (c) Frito Lay 1879, and
(d) Russet Norkotah.
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3. Results and discussions

3.1. Reference distribution

The basic statistics for glucose and sucrose obtained from the
wet chemistry experiments are shown in Table 1 after discarding
outliers and other experimental error values (<0). According to
Storey (2007), glucose, and sucrose contents in potatoes are as high
as 1.5% and 6.6% respectively. Thus, and based on the obtained
sugar concentrations, the cut-off values for glucose, and sucrose
were chosen as 1.5% and 2.5%. In the case of sucrose, the cut-off
level was chosen as there were relatively few samples (less than
10 samples for both cultivars) that had values higher than 2.5%.
Thus, they were considered outliers. Skewness resulted in both
seasons especially in the case of sucrose even though the
experiment was designed to minimize such. Maximum values of
glucose and sucrose obtained from the 2011 season were higher
than values in 2009 which is a direct result of the lower
temperature (1 �C) added to the 2011 season.

3.2. Diffuse reflectance spectra

The relative values of absorbance (log(1/reflectance)) resulting
from the 2009 season NIR measurements in the case of sliced
samples and whole tubers are shown in Fig. 2a–d for both Frito Lay
1879 and Russet Norkotah. For the sliced samples, similar trend of
signals for FL and RNwas observedwithmultiple water absorption
peaks around 970, 1200, and 1450nm (Workman and Weyer,
2008). Moreover, another absorption peak, in both cultivars, is
noted at 1530nmwhich is a possible indication of an OH polymeric
group located in starch (Workman and Weyer, 2008). In general,
signals collected from whole tubers showed less absorption than
sliced samples especially for RN which yielded a more condensed
response in the raw signals than FL. The possible explanation for
such a result is the thicker periderm layer of RN that reduces the
captured diffuse reflectance signals. It is worth stating that the
absorption peaks for sliced samples (around 970, 1200, and
1450nm) were noted in the whole tubers in both cultivars with

more clarification in FL. Another effect of the thick skin for RN was
the absence of the absorption peak at 1530nm and the relatively
slight presence, compared to sliced samples, of the same peak in FL
samples. Results of the 2011 season, not shown, showed similar
trend as in the 2009 season, with more condensed raw signals for
both cultivars in the case of sliced samples and whole tubers,
which refers to less variation between samples.

3.3. Partial least squares regression (PLSR) using all or selected
wavelengths

Results for calibration and prediction models of glucose and
sucrose using all and selected wavelengths for FL and RN cultivars
in the 2009 and 2011 seasons are shown in Table 2 and Table 3
respectively (only the best models are shown). Williams (2007),
illustrated that in NIR spectroscopy, correlation coefficient (r)
values of 0.81-0.90 can be used for screening, and approximate
calibration, values of 0.91–0.95 can be used for most applications
including research, values of 0.96–0.98 are workable for most
industrial applications, and finally r�0.99 are suitable for any
application. In the case of RPD, values of 1.5–2.0 refers to themodel
capability to differentiate between high and low constituent
values. Whereas values of RPD in the range of 2.0–2.5 means a
possibility of coarse prediction of reference values. Values of RPD of
2.5–3.0 or higher can be used for good and excellence prediction
respectively (Nicolai et al., 2007). Results of PLSR showed general
improvement of prediction performance when comparing models
obtained using all versus selected wavelengths. For the 2009 sea-
son and in the case of sliced samples, glucose prediction models,
obtained using IPLS selected wavelengths, yielded r(RPD) values of
0.74(1.49) and 0.94(2.73) for FL, and RN. Sucrose models showed
less correlation performance for both cultivars with r(RPD) values
of 0.50(1.15), and 0.41(1.01) for FL, and RN respectively. In the case
of whole tubers, a similar trend of resultswas obtainedwith r(RPD)
values for glucose models being 0.73(1.46), and 0.95(2.95) for FL,
and RN. For sucrose prediction models, r(RPD) values were 0.47
(1.13), and 0.40(1.02) for FL, and RN. In the 2011 season, general
improvement of prediction performance was obtained, especially

Table 2
Best performance PLSR results for predicting glucose and sucrose of potato tubers using NIR reflectance mode (sliced samples and whole tubers) obtained from all
wavelengths for Frito Lay1879 and Russet Norkotah cultivars in the 2009 and 2011 seasons.

Season Sample type CVY Sample size Preprocessing Calibration model Prediction model

rcal RMSECcv (%) LVs rpred RMSEP (%) RPD

2009 Slice FLGL 1007 A4,B1,C2 0.73 0.0574 15 0.72 0.0508 1.44
FLSU 981 A2,B1,C0 0.51 0.0311 18 0.36 0.0311 1.06
RNGL 336 A7,B1,C2 0.96 0.0589 18 0.90 0.0567 2.32
RNSU 334 A2,B1,C0 0.50 0.0786 20 0.44 0.0729 1.11

Whole FLGL 503 A4,B1,C0 0.77 0.0231 20 0.73 0.0199 1.44
FLSU 495 A3,B2,C0 0.57 0.0332 6 0.36 0.0316 1.04
RNGL 167 A7,B2,C2 0.99 0.0542 16 0.97 0.0333 3.95
RNSU 155 A2,B1,C2 0.40 0.1214 14 0.37 0.1126 1.08

2011 Slice FLGL 390 A0,B1,C0 0.74 0.0511 13 0.61 0.0476 1.25
FLSU 364 A2,B1,C0 0.62 0.0630 12 0.61 0.0494 1.26
RNGL 150 A3,B1,C2 0.93 0.0662 17 0.66 0.0839 1.26
RNSU 140 A1,B1,C2 0.72 0.2028 9 0.37 0.2065 0.96

Whole FLGL 193 A4,B2,C0 0.97 0.0452 19 0.71 0.0441 1.28
FLSU 193 A2,B1,C0 0.66 0.0523 13 0.66 0.0471 1.34
RNGL 75 A2,B1,C2 0.82 0.0754 12 0.77 0.0665 1.56
RNSU 74 A5,B1,C2 0.76 0.1700 7 0.75 0.1324 1.52

Nomenclature: CVY (CV=Cultivar, Y = Constituent); Ax: First stage spectrum preprocessing; Bx: Second stage spectrum preprocessing; A0: No preprocessing; B1: Mean center;
A1: Weighted baseline; B2: Orthogonal signal correction; A2: 1st derivative; Cx: Reference data preprocessing; A3: 2nd derivative; C0: No reference transformation; A4:
Normalization; C1: Log reference transformation; A5: Standard normal variate (SNV); C2: Power reference transformation; A6: Multiplicative signal correction (MSC); A7:
Median center; Preproc.: Optimal preprocessing; Rcal: correlation coefficient for calibration set of data; RMSECcv: root mean square error of calibration set of data using cross
validation; LVs: number of latent variables selected for the calibration model; Rpred: correlation coefficient for prediction set of data; RMSEP: root mean square error of
predation set of data; RPD: ratio of reference standard deviation to root mean square error of the model.
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for sucrose models, possibly due to the broader and more uniform
sugar distribution obtained in such season compared with the
2009 season. In the case of sliced samples, glucose prediction
models showed r(RPD) values of 0.74(1.48), and 0.90(2.25) for FL,
and RN. Whereas, sucrose models yielded r(RPD) values of 0.67
(1.31), and 0.75(1.41) for FL, and RN. In the case of whole tubers,
considerable enhancement of predictionwas achievedwith r(RPD)
values for glucosemodels being 0.81(1.70) for FL, and 0.97(3.91) for
RN. Sucrose prediction models yielded r(RPD) values of 0.75(1.52),
and 0.92(2.57) for FL, and RN respectively. The best relationships
between the measured, and predicted sugar values for FL, and RN
for sliced samples and whole tubers in the 2011 season is shown in
Fig. 3.

The improvement of results for whole tubers compared to
sliced samples, especially for sucrose models in the 2011 season, is
possibly a result of the sugar distribution inside tubers. According
to Kumar and Ezekiel (2004),Rama and Narasimham (2003) and
Rastovski et al. (1987), sugars inside potato tubers tend to
concentrate more on the vascular ring than on other tuber parts.
Consequently, the diffuse reflected light is expected to hold

information of the tissue closer to the skin than to the pith. Thus,
measuring the glucose and sucrose content for whole tubers using
a rapid NIR device or system should be conducted on the above
referred area.

Results also showed that prediction models of glucose and
sucrose using selected wavelengths obtained using IPLS yielded
better performance than GA models for both cultivars. Moreover,
Table 3 indicates that the selected wavelengths using IPLS were
less than GA in all models. Consequently, there is more likelihood
for over fitting to occur in models built using GA than IPLS when
fewer number of samples than variables occurs whichwas noted in
the 2011 season compared to 2009 season (Wise et al., 2006).

Due to the lower sugar concentration for FL than RN, results
showed less correlation of prediction models for FL than RN in the
case of glucose and sucrose as the detection of certain chemical
substances using spectroscopic systems increase with the concen-
tration.

It is worth stating that the prediction of glucose and sucrose for
potatoes using selected wavelengths and NIR diffuse reflectance
was not previously published and the prediction results obtained

Table 3
Best performance PLSR results for predicting glucose and sucrose of potato tubers using NIR reflectance mode (sliced samples and whole tubers) and selected wavelengths
using IPLS and GA for Frito Lay1879 and Russet Norkotah cultivars in the 2009 and 2011 seasons.

Selection Season Sample
type

CVY Number of wavelengths Preprocessing Window width Calibration model Prediction model

rcal RMSECcv (%) LVs rpred RMSEP(%) RPD

IPLS 2009 Slice FLGL 84 A4,B1,C0 W3 0.72 0.0218 20 0.74 0.0193 1.49
FLSU 68 A4,B1,C0 W2 0.57 0.0306 18 0.50 0.0286 1.15
RNGL 123 A0,B1,C0 W1 0.96 0.0332 20 0.94 0.0353 2.73
RNSU 40 A0,B1,C0 W2 0.61 0.0800 20 0.41 0.0662 1.01

Whole FLGL 48 A0,B1,C0 W2 0.72 0.0215 20 0.73 0.0197 1.46
FLSU 48 A4,B1,C0 W2 0.52 0.0304 20 0.47 0.0292 1.13
RNGL 78 A4,B2,C0 W2 0.95 0.0330 20 0.95 0.0327 2.95
RNSU 16 A4,B1,C0 W3 0.56 0.0847 20 0.40 0.0657 1.02

2011 Slice FLGL 114 A4,B3,C0 W3 0.86 0.0425 17 0.74 0.0403 1.48
FLSU 55 A0,B1,C0 W1 0.75 0.0567 17 0.67 0.0476 1.31
RNGL 102 A4,B3,C2 W2 0.98 0.0577 20 0.90 0.0468 2.25
RNSU 52 A0,B2,C2 W2 0.91 0.1575 20 0.75 0.1414 1.41

Whole FLGL 53 A0,B1,C0 W1 0.91 0.0351 20 0.81 0.0333 1.70
FLSU 52 A1,B2,C0 W2 0.85 0.0427 20 0.75 0.0346 1.52
RNGL 30 A6,B2,C2 W2 0.96 0.0517 15 0.97 0.0266 3.91
RNSU 36 A0,B2,C2 W2 0.93 0.1572 20 0.92 0.0790 2.57

GA 2009 Slice FLGL 116 A4,B1,C2 0.69 0.0591 12 0.70 0.0523 1.40
FLSU 107 A4,B1,C0 0.47 0.0319 10 0.38 0.0305 1.08
RNGL 128 A4,B1,C2 0.93 0.0609 13 0.87 0.0644 2.04
RNSU 105 A0,B1,C0 0.45 0.0836 8 0.23 0.0708 0.95

Whole FLGL 128 A4,B2,C0 0.74 0.0226 19 0.68 0.0211 1.36
FLSU 123 A0,B1,C0 0.52 0.0323 20 0.35 0.0315 1.05
RNGL 169 A4,B2,C0 0.97 0.0542 18 0.94 0.0326 2.85
RNSU 125 A4,B2,C0 0.74 0.0720 4 0.53 0.0710 1.14

2011 Slice FLGL 105 A7,B1,C0 0.69 0.0499 10 0.52 0.0516 1.16
FLSU 95 A4,B1,C0 0.55 0.0631 8 0.52 0.0530 1.17
RNGL 113 A7,B2,C2 0.85 0.0756 9 0.65 0.0802 1.31
RNSU 104 A5,B1,C2 0.67 0.1975 6 0.42 0.1858 1.07

Whole FLGL 131 A4,B1,C0 0.74 0.0481 10 0.72 0.0386 1.46
FLSU 91 A4,B1,C0 0.64 0.0539 9 0.59 0.0506 1.25
RNGL 116 A5,B1,C2 0.95 0.0770 12 0.77 0.0718 1.55
RNSU 101 A4,B1,C2 0.90 0.1693 11 0.71 0.1444 1.41

Nomenclature: CVY (CV=Cultivar, Y = Constituent); Ax: First stage spectrum preprocessing; Bx: Second stage spectrum preprocessing; A0: No preprocessing; B1: Mean center;
A1: Weighted baseline; B2: Orthogonal signal correction; A2: 1st derivative; Cx: Reference data preprocessing; A3: 2nd derivative; C0: No reference transformation; A4:
Normalization; C1: Log reference transformation; A5: Standard normal variate (SNV); C2: Power reference transformation; A6: Multiplicative signal correction (MSC); W1:
Window size of 1 wavelength; A7: Median center; W2: Window size of 2 wavelengths; W3: Window size of 3 wavelengths; Rcal: correlation coefficient for calibration set of
data; RMSECcv: root mean square error of calibration set of data using cross validation; LVs: number of latent variables selected for the calibration model; Rpred: correlation
coefficient for prediction set of data; RMSEP: root mean square error of predation set of data; RPD: ratio of reference standard deviation to root mean square error of the
model.
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in this study by PLSR are comparable with others reported by
Hartmann and Büning-Pfaue, (1998), on homogenized samples
(RMSEP =0.041% and 0.037% for glucose and sucrose); Yaptenco
et al. (2000), on whole tubers (RMSEP =0.087% and 1.473% for
glucose and sucrose); or Haase, (2011), on aliquots samples
(SEP =0.0389%, and 0.0966% for reducing sugars and sucrose).
Sampling times in this study are significantly lower than that for all
previous studies except for Yaptenco et al. (2000), which did not
include a separate prediction data set. This study also confirms the
results obtained by Rady et al. (2014), in which a potential
investigation of measuring glucose and sucrose of potatoes was
shown using different techniques and strong correlation for
glucose was achieved for sliced samples (RMSEP=0.0515%, and
0.0786% for FL, and RN), and whole tubers (RMSEP=0.0620%, and
0.1529% for FL, and RN) using VIS/NIR interactance spectroscopy.
However, no variable selection was applied. Other studies (i.e.
Kawano et al., 1993) addressed the soluble solids content, in �B
(Brix), and not the individual sugar content. Soluble solids content
is not an accurate indication of individual sugars.

Additionally, combining the data sets, including all wave-
lengths, of the 2009, and 2011 seasons was also conducted and the
prediction models were obtained using PLSR. Results (not fully

presented) yielded slightly better results in most models. The
values of r(RPD) for glucose models were 0.77(1.58) and 0.95(3.31)
for FL and RN in the case of sliced samples, and those values were
0.75(1.51) and 0.95(3.33) in the case of whole tubers. For sucrose
prediction models, improvement was shown for sliced samples
with r(RPD) values of 0.54(1.19) and 0.67(1.34) for FL and RN. In the
case of whole tubers, no improvement was achieved where r(RPD)
values were 0.52(1.17) and 0.56(1.20) for FL and RN.

3.4. Classification of potatoes based on sugar levels

Spectral and reference data for sliced samples andwhole tubers
were divided into two classes based on glucose and sucrose
thresholds as described in Section 2.4.3 for the 2009 and 2011
seasons with the number of class 1 (sugar level< the threshold) or
class 2 (sugar level > the threshold) presented in Table 4. It is worth
stating that outliers of sugar concentrations were eliminated as
indicated in Section 3.1. The highest classification rates of training
and testing groups obtained for slice samples and whole potato
tubers of FL and RN cultivars based on glucose and sucrose
concentrations are shown in Table 4 with bold fonts to mark the
technique(s) producing the best classification rates in the testing

[(Fig._3)TD$FIG]

Fig. 3. Best prediction models based on selected wavelengths and PLSR predicted constituents in the 2011 season for Frito Lay 1879 and Russet Norkotah for (a) Glucose for
sliced samples, (b) Glucose for whole tubers, (c) Sucrose for sliced samples, and (d) Sucrose for whole tubers.
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groups. Classification performance generally followed the PLSR
trend stated in Section 3.2 in the 2009 and 2011 seasons. For the
2009 season, classification rates of glucose-based models for the
sliced samples (83% for FL and 81% for RN), were similar to values
obtained for whole tubers (81%, and 83% for FL and RN). Sucrose-
based classification models, however, yielded lower performance
for the sliced samples (63% and 68% for FL and RN), and whole
tubers (62% and 69% for FL and RN). Following the PLSR results,
classification results for glucose in the 2011 showed similar
performance compared to 2009 results for the sliced samples (82%
and 77% for FL and RN) and even better results in the case of whole
tubers, especially for RN (77% and 100% for FL and RN). Moreover,
significantly enhanced classification rates were obtained for
sucrose models in the case of sliced samples (75% and 82% for
FL and RN), and whole tubers (71%, and 79%).

In general, LDA, PLSDA, and classifier fusion yielded better
classification results than other techniques. Such trend is a result of
the capabilityof the PLSDA technique, as illustrated in Section2.4.3,
for treating data with colinearity problems, and the application of
PCA analysis on spectral data prior to performing classification
using LDA. Combined classifiers also resulted in better classifica-
tion than Knn and ANN classifiers, and slightly similar to results
obtained by PLSDA, and LDA.

Broader sugar distribution in the 2011 season is strongly
believed to have resulted in better classification results, compared
with the 2009 season, especially for sucrose, which follows the
same trend obtained in PLSR results. Classification of potatoes
based on sugar levels and using noninvasive measurements was
not addressed previously in literature and results showed the
potential for eliminating tubers with sugar content that is not
suitable for frying, allowing these tubers to potentially be
reconditioned to reduce sugar content (Sowokinos, 2007).
Enhancing classification outputs obtained in this study is feasible
by developing a broader sugar distribution, increasing the number
of samples, and using kernel-based classification methods (i.e. soft
independent modeling of class analogy or SIMCA, Gaussian
mixture models, and support vector machines or SVM).

4. Conclusions

IPLS and GA were tested to select the most discerning
influencingwavelengths from spectral data obtained bymeasuring
diffuse reflectance of potato tubers and 12.7mm slices in the NIR
region (900–1685nm). Frito Lay 1879 and Russet Norkotah potato
cultivars were used in this study, and glucose and sucrose were
ground truth measured using the enzymatic approach. PLSR was
utilized to build calibration and prediction models for glucose and
sucrose. Selected wavelengths were found to have strong correla-
tion performance for sliced samples with RMSEP of 0.0193%, and
0.0353% for FL and RN in the case of glucose. In the case of sucrose,
the best models had RMSEP values of 0.0286% and 0.0662% for FL
and RN respectively. Prediction models obtained from whole
tubers yielded similar performance for glucose to sliced samples
with RMSEP values of 0.0197%, and 0.0327% for FL and RN in the
case of glucose, while those values for sucrose were 0.0295%, and
0.0657% for FL and RN.

Monitoring sugar content in tubers dedicated for processing is an
important quality assurance step to prevent non-enzymatic
browning after frying. Levels of RMSEP obtained in this study are
less than thresholds stated in section 1 by Stark et al., 2003. Thus,
there is a possibility tomore rapidly track sugar levels, especially for
whole tubers, which is a crucial practice during storage, and prior to
processing. Classification of whole tubers based on sugar levels is
considered important to the frying industry and was shown to have
feasible application for sorting, especially in the case of glucose in
which the classification rate values for testing sets were as high as
81%, and100% for FL, andRN, and those valueswere 71%, and79% for
sucrose. Classification rates for sliced samples were similar to those
obtained for whole tubers. Performance of classificationmodels can
possiblybe improvedwithbroaderandmoreuniformdistributionof
sugars, and scanning thewhole tuber inmore than one point on the
tuber surface so that more robust prediction and classification is
feasible.Moreover, tosimulate real sortingconditions, it is important
to conduct more experiments on moving tubers mixed with clods,
and using tubers that have soil attached to their surfaces. Building a

Table 4
Highest classification rates of glucose and sucrose for Frito Lay 1879 and Russet Norkotah for sliced samples and whole tubers using NIR reflectance mode and sliced samples
and whole tubers in 2009 and 2011 seasons.

Season Sample
type

CVY Number of
samples

Preprocessing for LDA; Knn; PLSDA; ANN; combined
classifier

Classification rate for
training set (%)

Best classification rate for testing set
(%)

Class
1

Class
2

LDA Knn PLSDA ANN Rate Method(s)

2009 Slice FLGL 445 562 A5; A2; A1; A7; A4 79 64 81 78 83 LDA
FLSU 523 458 A4; A4; A3; A5; A7 63 55 64 56 63 LDA
RNGL 177 159 A1; A1; A0; A4; A6 84 62 94 70 81 LDA, PLSDA
RNSU 195 139 A3; A3; A6; A0; A0 68 53 67 56 68 Combined classifiers

Whole FLGL 222 281 A4; A4; A7; A5; A4 72 70 81 76 81 Combined classifiers
FLSU 266 229 A0; A2; A7; A0; A7 65 57 70 57 62 Combined classifiers
RNGL 88 79 A0; A2; A0; A5;A4 88 75 88 75 83 LDA
RNSU 87 68 A3; A0; A4; A0; A4 69 64 69 54 69 Knn PLSDA, combined

classifiers

2011 Slice FLGL 204 186 A4; A5; A0; A5; A0 73 64 88 66 82 LSDA, combined classifiers
FLSU 218 146 A4; A1; A4; A0; A1 69 55 85 64 75 LDA
RNGL 66 84 A7; A5; A4; A7; A4 81 65 87 70 77 PLSDA, combined classifiers
RNSU 58 82 A7; A1; A0; A1; A0 80 64 89 64 82 PLSDA, class

Whole FLGL 136 57 A7; A0; A0; A0;A0 81 57 97 74 77 LDA, combined classifiers
FLSU 122 71 A5; A0; A5; A9;A4 83 54 79 69 71 LDA, PLSDA
RNGL 31 44 A0; A0; A1; A5;A0 98 60 100 73 100 PLSDA, combined classifiers
RNSU 26 48 A0; A7; A4; A0;A4 92 71 73 73 79 PLSDA, combined classifiers

Nomenclature: CVY (CV=Cultivar, Y = Constituent); Ax: First stage spectrum preprocessing; A0: No preprocessing; A1: Weighted baseline; A2: 1st derivative; A3: 2nd
derivative; A4: Normalization; A5: Standard normal variate (SNV); A6: Multiplicative signal correction (MSC); A7: Median center.
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sorting system for potato tubers based on sugar levels is still in the
research stage andmorework is needed to build up a robust system
with performance needed from growers and processors. These
results suggest it may be possible to make a handheld device for
monitoring and classifying potatoes based on sugars and using
whole tubers or sliced samples as the sample preparation for the
latter case is very small.
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