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Abstract

Cultivated carrot (Daucus carota subsp. sativus)
is one of about 25-40 related wild species in the
genus Daucus depending on the classification. It
is part of a widely distributed and taxonomically
complex family Apiaceae (Umbelliferae) con-
taining 466 genera and 3820 species that is one
of the largest families of seed plants. Members of
the Apiaceae, particularly the genus Daucus,
have been the subject of intensive recent molec-
ular studies on the structure and genetics of
plastids and mitochondria. This chapter sum-
marizes organellar (plastids and mitochondria)
structure, function, mutational rates, and
inter-organelle DNA transfer in the Apiaceae
and inheritance in the genus Daucus, with a
wider focus on the Apiaceae and the sister family
Araliaceae, and places these data in the context
of other studies in the angiosperms.
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12.1 Plastid Structure, Mutational
Rates, and Inheritance

in Angiosperms

Palmer (1985) provided an early review of
plastid structure and gene content, documenting,
in angiosperms, (1) its relatively small size
(generally 120-160 knt); (2) high copy number
(as many as 1000 per cell); (3) quadripartite
circular structure comprising two inverted repeats
(IR), flanking a large single-copy (LSC) region
and a small single-copy (SSC) region; (4) labile
structure of the IR region variously shrinking and
expanding in different lineages with the junction
between the inverted repeat and the large
single-copy region located in a generally fixed
position within the 276-nt rps 19 gene;
(5) repertoire of a complete set of rRNA, tRNA,
and protein-encoding genes (Fig. 12.1); (6) only
rare modifications of this basic structure in par-
asitic plants with reduced gene content, deletion
of the IR region in the Fabaceae, or extensive
gene rearrangements in the Geraniaceae. In
summary, most of the over 200 angiosperm
chloroplast genomes examined at that time were
overwhelmingly similar in size, conformation,
repeat structure, gene content, and gene order
and arrangement, with the predominant mode of
structural evolution consisting of small deletions
and insertions occurring in intergenic spacers, 5’
and 3’ untranslated regions, and in the few
introns found in their genes.
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Fig. 12.1 Structure of the carrot mitochondrial and
plastid genomes and inter-organelle DNA transfer;
genome coordinates every 25 kb are listed inside the
figure. a Mitochondrial (top) and plastid (bottom)
genomes (visualized using Circos version 0.69-6; Krzy-
winski et al. 2009) and gene annotations of Daucus carota;
these circularized genomes are drawn open to show gene
transfers between them. For the plastid, only genes over
300 nt are annotated for space limitations, but these are
collinear with those fully annotated in Ruhlman et al.
(2006). Duplications within (blue) and between
(red) genomes are shown by connected lines or ribbons.
The direction of all duplications between genomes is
presumed to be from plastid to mitochondrion except
DcMP from mitochondrion to plastid (Iorizzo et al. 2012a,
b) as labeled by the arrow. Organellar sequences and gene
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annotations were obtained from NCBI accessions
NC_017855 (mitochondrion) and NC_008325 (plastid).
Duplicated regions were detected using BLAST+ version
2.6.0 megablast program (Camacho et al. 2009) with
minimum alignment length of 50, minimum percentage
similarity of 80, and no dust filtering. b Structure of the
plastid D. carota DcMP sequence. Open reading frames
(ORFs) were detected using Open Reading Frame Finder
(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The
sequence was oriented according to 5'-3’ (indicated by
arrows); ORF orientation is in opposite direction as related
to other figures. Thick vertical blue lines indicate target
site duplication (TSD). Thin red vertical lines indicate
relative position of P1, P2, and P3 tnrV promoters. The red
box indicates the region comprising partial sequence of
cox1 gene. The scheme is drawn to scale
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Palmer (1985) mentioned the maternal inheri-
tance of plastid DNA, documented for most spe-
cies by Tilney-Bassett (1978). Corriveau and
Coleman (1988) developed a rapid cytological
screen based on epifluorescence microscopy for
maternal inheritance and examined 235 plant
species from 80 angiosperm families. They
detected putative plastid DNA in the generative
and/or sperm cells of pollen from 43 species in 26
genera of 15 families, but not in the generative or
sperm cells of pollen from the remaining 192
species (82%), strongly suggesting that they have
only maternal inheritance. Their results corrobo-
rated most reports of maternal plastid inheritance,
and suggested that biparental inheritance of
plastids is rare, occurring in about 14% of flow-
ering plant genera, scattered among 19% of the
families examined. The carrot plastid genome
follows a pattern of maternal inheritance (Vivek
etal. 1999). Jansen and Ruhlman (2012) reviewed
data on maternal inheritance of plastids in
angiosperms and provided a similar figure (80%)
for angiosperm species with maternal inheritance,
the remaining 20% with biparental inheritance.

Wolfe et al. (1987) compared mutational rates
among plant mitochondrial (mtDNA), plastid
(cpDNA), and nuclear DNA (nDNA) sequences;
and among plant and animal mitochondrial DNA
sequences. He documented that (1) in contrast to
mammals, where mtDNA evolves at least five
times faster than nDNA, angiosperm mtDNA
evolves at least five times slower than nDNA,
(2) plant mtDNA undergoes much more frequent
rearrangements and is larger and variable in size
than mammalian mtDNA, (3) cpDNA evolves
much slower than plant nDNA, and (4) DNA
from the cpDNA IR region evolves much more
slowly that the plant LSC or SSC regions. The
relative structural conservatism and slower evo-
lution rate of cpDNA in plants made it an ideal
molecule for plant phylogenetic studies.

Early plastid phylogenetic studies were based
partly on DNA restriction site procedures, but
were largely replaced by massive data from
next-generation DNA sequencing, stimulating
the rapid accumulation of whole plastid DNA
sequences. For example, Jansen and Ruhlman
(2012) reported the public availability of 200
plastid genomes that as of June 2018 has grown
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to over 3000 (https://www.ncbi.nlm.nih.gov/
genomes/GenomesGroup.cgi?taxid=2759&opt=
plastid), allowing for finer comparisons of plastid
DNA sequences. Raubeson and Jansen (2005)
documented varying rates of change in different
regions of the plastid genome, favoring phylo-
genetic studies at different taxonomic levels.
Plastid DNA analyses (first DNA restriction site
studies, and then DNA sequences from portions
of the genome) dominated much of the molecular
phylogenetic literature in the 1980s and 1990s.
Jansen and Ruhlman (2012) documented addi-
tional lineages of both gymnosperms and
angiosperms (the Campanulaceae) deviating
from stability of plastid architecture, gene and
intron content, and gene order across seed plants.
They documented highly rearranged plastomes to
exhibit three general phenomena: (1) highly
accelerated rates of nucleotide substitutions,
(2) an increase in the number of dispersed
repeats, many of which are associated with
rearranged endpoints, and (3) biparental plastid
inheritance. They reviewed studies (e.g., Lilly
et al. 2001) documenting deviations from the
typical circular arrangement of the plastid mole-
cule, to include multimeric circles or linear and
branched structures.

The phylogenetic analysis of 81 plastid genes
in 64 sequenced genomes by Jansen et al. (2007)
allowed lineage-specific correlations between
rates of nucleotide substitutions. They docu-
mented gene and intron content in plastids to be
highly conserved among the early diverging
angiosperms and basal eudicots, but found 62
independent gene and intron losses limited to the
more derived monocot and eudicot clades. They
showed that most angiosperm plastid genomes
contain 113 different genes, 16 of which are
duplicated in the inverted repeat, for a total of
129 genes. Intron content was shown to be
highly conserved across angiosperms with most
genomes containing 18 genes with introns. Like
gene losses, intron losses were shown to be
restricted to the more derived monocot and
eudicot clades. Their fully resolved and strongly
supported phylogenetic tree supported the genus
Amborella as the earliest diverging lineage of
flowering plants (now estimated to contain over
257,400 species classified into 52 orders and
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about 450 families; Judd et al. 2016), followed
by the angiosperm orders Nymphaeales and
Austrobaileyales, and provided strong support
for a sister relationship between eudicots and
monocots.

12.2 Plastid Structure in the Apiales
(Apiaceae and the Sister
Family Araliaceae)

Our literature survey of the in the Apiales
(Table 12.1; data as of May 1, 2018) recovered
79 reports of published genomes in the Apiaceae
and 33 reports (112 in total) in the Araliaceae.
Like the Jansen et al. (2007) wider survey of the
angiosperms, our survey of all 112 Apiales plastid
genomes from these two families documents a
single circular double-stranded DNA molecule,
displaying the typical quadripartite structure of
angiosperm plastid genomes, containing 111-114
nonduplicated genes. All plastid genomes are
collinear, consistent with the rarity of recombi-
nation in plant plastomes (Palmer 1985). Total
genome lengths varied from 146,512 in Angelica
nitida to 171,083 in Caucalis platycarpos; with a
large single-copy region from 83,553 in Daucus
crinitus to 94,684 in Pimpinella rhomboidea; a
small single-copy region ranging from 17,139 in
Crithmum maritimum to 19,117 in Schefflera
delavayi; and a pair of inverted repeats from
17,217 nt in P. rhomboidea to 27,993 in C.
maritimum. Average CG contents range from
36.8% in Eleutherococcus gracilistylus to 38.1%
in Aralia undulata and Panax notoginseng. The
number of nonduplicated genes ranged from 111
in Bupleurum falcatum to 114 in many other
species.

12.3 Plastid Structure in Daucus
Sensu Lato

All reports of Daucus in its expanded sensu
(sensu lato, Banasiak et al. 2016, see Chap. 2)
likewise documented a typical chloroplast
quadripartite circular genome consisting of a

D. M. Spooner et al.

total length in nt varying from 155,441 in Dau-
cus involucratus to 157,336 in Daucus setulosus;
a large single-copy region from 83,553 in D.
crinitus to 84,444 in Rouya polygama; a small
single-copy region 17,314 in R. polygama to
17,887 in Daucus tenuisectus; and a pair of
inverted repeats 26,924 nt in Daucus bicolor to
27,741 in Daucus aureus. Spooner et al. (2017)
did not report average GC contents but they
documented an inverse relationship between read
coverage and GC content, most notably in the
second half of the inverted repeat region, as seen
in the coverage plots (Fig. 12.2). This observa-
tion is likely a reflection of the Illumina platform
that introduces coverage bias in regions with
high GC content (Ross et al. 2013). All reports
documented 113 unique genes consisting of 80
protein-coding genes, 29 tRNA genes, and 4
RNA genes.

The inverted repeat junctions flanking the
LSC were identical in all genotypes examined by
Spooner et al. (2017), while those flanking the
SSC were variable (Fig. 12.3). These variations
form six distinct classes (A-F), with the
out-group Oenanthe virgata (class F) having the
largest fraction of the ycfl gene included in the
inverted repeat, including a 9-nt insertion unique
to this species. Relative to Oenanthe, class A
consists of 15 accessions, which includes D.
carota, and has a 326-nt contraction (reduction in
the size of the inverted repeat); class B consisting
of only D. aureus has the largest contraction,
422 nt; class C consisting of five accessions has a
318-nt contraction; class D consisting of 15
accessions has a 319-nt contraction; and class E
consisting of only C. platycarpos has a 50-nt
contraction. Relative to the plastid phylogeny of
Spooner et al. (2017), there is a direct cladistic
relationship of these inverted repeat junction
classes with all accessions of D. carota and its
immediate sister species Pseudorlaya pumila and
Rouya polygama having class A; D. aureus class
B; D. muricatus, D. tenuisectus, and D. crinitus
class C; D. conchitae, D. crinitus, D. glochidia-
tus, D. littoralis, D. pusillus, D. setulosus, class
D; out-group Caucalis platycarpos class E; and
out-group O. virgata class F.
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Table 12.1 (continued)

Carrot Organelle Genomes: Organization, Diversity, ...

Inverted Number of unique

repeat

Percent average

Small

Large

Total length in
nucleotides

Reference

Species

(nonduplicated) genes

single copy | CG content

single copy

156,090

Manzanilla et al.

(2018)

Panax stipuleanatus H. T. Tsai and K. M. Feng

156,064

NCBI: NC_030598.1

Panax stipuleanatus

155,993
156,022;
156,099
156,341

Kim et al. (2017)

Panax vietnamensis Ha and Grushv.

Manzanilla et al.

(2018)

Panax vietnamensis

114

25,551
25,965

37.8

19,117
18,146

86,112

Li et al. (2013)
Zong et al. (2016)

Schefflera delavayi (Franch.) Harms

37.93

86,609

156,685

Schefflera octophylla (Lour.) Harms

“We report the numbers for Arracacia xanthorrhiza from Alvarado et al. (2017) but do not use them in our summaries in the text because of the atypical calculations in this paper

"Ruhlman et al. (2006) report 115 unique plastid genes, but Jansen et al. (2007) correct this to 113
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The plastids of members of D. carota sensu
lato have variable numbers of repeats (scanned
for minimum length 30 nt) between 13 and 18,
with a minimum size of 70 nt for R. polygama
and a maximum size of 127 nt in D. crinitus.
Twenty-five accessions share a maximum repeat
size of 88, three accessions 106 nt, and two
accessions 109 nt. Species in closely related
clades share a larger number of repetitive
sequences (Spooner et al. 2017).

12.4 Mitochondrial Structure
and Function in Angiosperms

Mitochondrial DNA has the same basic role in
plants as it does in other eukaryotes, encoding a
small number of essential genes of the mito-
chondrial electron transfer chain. For the
expression of these few genes, the mitochondrion
has its own translation system that is also par-
tially encoded by the mtDNA, including rRNAs,
tRNAs, and a variable number of ribosomal
proteins that vary across different species (Kubo
and Newton 2008). A few proteins involved in
the assembly of functional respiratory complexes
are encoded by the plant mtDNA. However, all
factors required for the maintenance of the
mtDNA and the expression of its genes are
encoded in the nucleus and imported from the
cytosol, thus placing mtDNA replication, struc-
tural organization, and gene expression under
nuclear control.

Although the number of mitochondrial genes
varies little between species, the size of the
mtDNA varies over more than a 100-fold, with
land plant mitochondrial genomes by far the
largest. Angiosperm mitogenomes are usually in
the range of 200-700 kb, but can be as large as
11 Mb in Silene conica (Sloan et al. 2012).
Although a few additional genes exist in plant
mitogenomes, and several genes contain introns,
these features do not contribute significantly to
the large size or the size variation of plant
mtDNA. Rather, most of the genome consists of
noncoding sequences that are not conserved
across species. Horizontal transfer seems to be
responsible for the acquisition of exogenous

david.spooner@ars.usda.gov
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Fig. 12.2 Read coverage and percent GC plots spanning the plastid genome of Daucus carota subsp. carota PI

274297, inverted repeat regions highlighted in gray
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Fig. 12.3 Junctions of the inverted repeats and small
single-copy plastid regions. Functional genes are repre-
sented in blue, tRNA in tan, and pseudogenes in gray.
Numbers in the figure represent the number of nucleotides
no longer present in inverted repeat B relative to
Oenanthe virgata. A (Daucus carota NC_008325.1) is

sequences (Bergthorsson et al. 2003), and a
fraction of plant mitogenomes can be recognized
as derived from plastid, nuclear, or viral DNA.
However, most noncoding sequences are of
unknown origin.

The structure of angiosperm mitochondrial
genomes is frequently characterized by repeat
sequences (Gualberto et al. 2014). The number and
the size of these repeats are important, as they
influence the size of the genome, and they are the
sites of intragenomic recombination, underlining
evolutionary changes in mitochondrial genome

JLB JsB JsA JLA

representative of 14 additional genotypes; B (D. aureus
319,403) is unique to this genotype; C (D. crinitus
652,413) is representative of four additional genotypes; D
(D. guttatus 286,611) is representative of 14 additional
genotypes; E (Caucalis platycarpos 649,446) and F (O.
virgata Ames 30,293) are unique to these genotypes

organization and structural dynamismin vivo (Guo
et al. 2017; Gupta et al. 2013). The repeats have
often been classified as large repeats (>500 nu-
cleotides), which can be involved in frequent
homologous recombination; intermediate-size
repeats (50-500 nucleotides), which are involved
in infrequent ectopic homologous recombination;
and small repeats (<50 nucleotides), which can
promote illegitimate microhomology-mediated
recombination (Arrieta-Montiel et al. 2009;
Davilaetal. 2011; Gualberto et al. 2014). Based on
the very active recombination behavior of large

david.spooner@ars.usda.gov



12 Carrot Organelle Genomes: Organization, Diversity, ...

repetitive sequences, early studies postulated that
the entire genetic content of mtDNA could be
assembled into a circular molecule, the so-called
master circle, from which multiple subgenomic
circular molecules are generated by intramolecular
recombination across direct repeats. Although the
repetitive sequences across species are not con-
served, their organization and structure, which
drive the recombination process, are conserved.
Recent studies based on gel-based approaches or
electron microscopy and quantitative sequence
data from next-generation sequencing have indi-
cated that circular and linear forms of mtDNA
co-exist in vegetative tissue. Sequencing data also
revealed the evolution of multichromosomal gen-
omes associated with genome size expansion.

An economically important trait that can
result from intraspecific variation promoted by
recombination within mitogenomes is cytoplas-
mic male sterility (CMS)—the maternally trans-
mitted inability of a plant to produce viable
pollen. CMS is widespread in natural plant
populations and is important for the evolution of
gynodioecious species, in which females and
hermaphrodites co-occur in populations (Dufay
et al. 2007). In crop breeding, including in carrot
it is an economically valuable trait used exten-
sively for the production of hybrid seeds (see
Chap. 3). It usually results from the expression
of a chimeric gene created de novo by recombi-
nation processes, particularly
microhomology-mediated recombination events,
each of which involves just a few nucleotides of
sequence identity. Multiple CMS phenotypes in
carrot have been described and are used in
breeding programs. A maternal mode of inheri-
tance of the mitochondrial (mt)DNA has been
observed in carrot CMS plants by several
authors, and different genes/ORFs have been
proposed to control this important trait (see
Chap. 3).

Given the larger genome size relative to
plastid, the diversity of repetitive sequences, and
its dynamic organization, assembling mitochon-
drial genomes is challenging, and for this reason
the number of mitochondrial genomes available
is far lower than the plastomes.
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12.5 Carrot Mitochondrial Genome,
Structure, and Organization

In 2012, Iorizzo et al. (2012a) assembled and
characterized the carrot mitochondrial genome,
the first and still the only mitochondrial genome
sequenced in the Apiaceae. With 281,132 nt, the
carrot mitogenome is among the smallest mito-
chondrial genomes sequenced to date among the
angiosperms and confirmed previous estimation
(255,000 nt) made by Robison and Wolyn
(2002) based on restriction digestion mapping.
Although the genome could be assembled and
represented as a master circle, Southern blot
analysis confirmed the presence of two recom-
binant sub-circles. The overall GC content of
carrot (45.4%) is comparable to other angios-
perms (Alverson et al. 2011; Rodriguez-Moreno
et al. 2011).

Annotation of the genome identified 44
protein-coding sequences and three ribosomal
RNAs, which confirmed the previous report of
Adams et al. (2002) based on Southern
hybridization that surveyed mitochondrial gene
presence or loss across 280 angiosperms. Trun-
cated copies of atpl and atp9 were detected,
confirming observations previously reported by
Bach et al. (2002). Considering a set of 51
mitochondrial conserved genes, the carrot mito-
genome lack 7 genes (sdh3, sdh4, rpl2, rps2,
rpsi10, rpsi4, and rps19), and three of them were
identified in the carrot genome assembly. In
addition to coding genes, the carrot mitogenome
contains 18 tRNAs that recognize 15 amino acids
and is missing tRNA genes for six amino acids,
which are likely coded by the nuclear genome.

As expected, intergenic spacer regions repre-
sent the largest part of the genome, 224,526 nt
(79.9%), with repetitive sequences occupying the
majority of this space (49%). With 74 repeats
ranging from 37 to 14,749 nt, the carrot mito-
chondrial genome has the lowest number of
repeats among the sequenced plant mitochondrial
genomes, which reflect its small genome size. All
but one are dispersed repeats. Most of the repeats
(about 90%) are between 20 and 202 nt in length
accounting for just 2.0% of the total genome

david.spooner@ars.usda.gov
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coverage. Nine large repeats ranging from 4220
to 14,749 nt account for 44.0% of the genome.
The insertion of the large repeat 1, between repeat
2 and 3, forms a 35 kb super-repeat. After wild
cabbage (Chang et al. 2011), this is the largest
repeat region described in eudicot mitochondrial
genomes to date. Other sequences in the inter-
genic spacer regions include additional open
reading frames not associated with any conserved
mt genes, and DNA of nuclear or plastid origin,
derived from intracellular gene transfer (IGT) or
possibly horizontal gene transfer (HGT), a
prevalent and ongoing process in plant evolution.

Intracellular DNA Transfer
in Angiosperms

12.6

While nuclear and mitochondrial genomes inte-
grate foreign DNA via IGT and HGT, plastid
genomes (plastomes) have resisted foreign DNA
incorporation and only recently has IGT been
uncovered in the plastomes of a few land plants.
The emergence of contemporary genomics has
dispelled traditional hypotheses of the sole evo-
lution by vertical descent with modification.
Drawing on phenotypic data, early investigators
could not have predicted the impact of HGT on
both the universality of the genetic code and
diversity of organisms found on earth (Vetsigian
et al. 2006). Although first recognized among
eubacteria (Tatum and Lederberg 1947), HGT
occurs across all domains of life and has shifted
our views on the phylogeny of organisms from
one of bifurcation to a more reticulate, web-like
mode of evolution (Soucy et al. 2015).

Just as the sharing of DNA sequences among
unrelated organisms has shaped their evolutionary
history, so has the transfer of sequences among the
genome-bearing compartments of individual cells
shaped the evolution of eukaryotic species. Intra-
cellular gene transfer, along with HGT, has played
a pivotal role in the evolution of multicellularity
and the oxygenation of earth’s atmosphere, facil-
itating the evolution of plant and animal life
(Timmis et al. 2004). The free-living,
single-celled organisms that ultimately became

D. M. Spooner et al.

mitochondria, and later plastids, of eukaryotic
cells through endosymbiosis contained the nec-
essary complement of genetic material for survival
in the extracellular environment. Once housed
within the host cell, much of that genetic material
was transferred to the host nuclear genome. This
massive transfer of DNA sequence fully inte-
grated the processes of the organelles with those
of the host nucleus.

Since the establishment of the cellular orga-
nelles, both mitochondrial and plastid genomes
(mitogenomes and plastomes) of plants have
continued to divest themselves of both coding and
noncoding DNA. While mitogenomes exhibit
more variation in overall size and retained gene
content (Adams et al. 2002), most plastomes
harbor a conserved set of coding sequences
within a relatively stable size and configuration,
with a small set of genes that tend to be trans-
ferred to the nucleus across the plant phylogeny
(Jansen and Ruhlman 2012). The transfer of DNA
sequence from both organelles to the nucleus is an
ongoing process that has contributed to the evo-
lution of the nuclear genome, regardless of whe-
ther those sequences were eventually purged from
their original location or activated for their
ancestral function elsewhere in the cell following
nuclear transcription (Timmis et al. 2004). Like-
wise, plant mitogenomes contain extensive
insertions of both plastid and nuclear DNA
(nDNA), although, for the most part, these remain
nonfunctional (Mower et al. 2012). Plastomes,
however, appear to be recalcitrant to the incor-
poration of foreign DNA either by HGT or IGT,
possibly because of the lack of an efficient DNA
uptake system within plastids (Bock 2015;
Richardson and Palmer 2007; Smith 2011).

Among the >3000 complete angiosperm
plastomes now available in GenBank (https://
www.ncbi.nlm.nih.gov/genbank/), just a few
lineages have been recognized to contain DNA
of nonplastome origin. Although a few studies
explored putative plastome sequences with high
identity to mtDNA, for the most part, the identity
was due to the presence of sequences of plastid
or nuclear origin in mitogenomes (Chumley et al.
2006; Ohtani et al. 2002).

david.spooner@ars.usda.gov
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The notion that land plant plastomes could
incorporate foreign DNA sequences without
biotechnological intervention was unheard of
prior to 2009 (Goremykin et al. 2009). To date,
legitimate cases of foreign DNA insertions into
the plastome have been reported in four unrelated
families/genus of angiosperms including Daucus
(Iorizzo et al. 2012a), Apocynaceae (Straub et al.
2013), Bambusoideac (Ma et al. 2015), and
Anacardium (Rabah et al. 2017). Identification of
these rare events have been facilitated in part by
the availability of complete mitogenome
sequences. Given the wide distribution of these
four families across four orders of land plants:
Apiales (asterid II), Gentianales (asterid I),
Sapindales (rosid II), and Poales (commelinid)
combined with the lack of informative common
features, suggested at least four independent
events across all land plants, which likely
occurred only once within each clade.

12.7 Inter-organelle DNA Transfer
in the Apiaceae, a Story

of First Discoveries

Goremykin et al. (2009), while analyzing the
Vitis vinifera L. (grape) mitochondrial genome,
detected two sequences of 74 and 126 nt which
were similar to the carrot plastid genome
(Ruhlman et al. 2006). The larger sequence has
high similarity to the coding region of the mito-
chondrial cytochrome c¢ oxidase subunit 1 gene
(coxI), prompting the authors to suggest that its
presence in the Daucus plastome might possibly
represent a rare transfer of DNA from the mito-
chondrion into the plastid. These two sequences
are contained within a large 1439-nt fragment of
the D. carota inverted repeat at positions 99,309—
100,747 and 139,407-140,845 (Ruhlman et al.
2006) that is a part of the 30rpsl12-trnV-GAC
intergenic spacer region. This fragment, how-
ever, has no similarity to any other published
plastid nucleotide region (Goremykin et al.
2009). Subsequently, Iorizzo et al. (2012a), in
characterizing the entire carrot mitochondrial
genome, verified the presence of this sequence in
both plastid and mitochondrial genomes and
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designated this site as the D. carota
mitochondrial-plastid (DcMP) region (Fig. 12.1
a). The DcMP sequence is 1452 nt-long in the
carrot plastome and is present as three noncon-
tiguous, rearranged sequences in the mitochon-
drial genome of D. carota (lorizzo et al. 2012a).
In the plastome, however, the DcMP sequence,
or a large portion of it, is present only in Daucus
(seven species) and its close relative Cuminum L.
(cumin), both of Scandiceae subtribe Daucinae.
Analysis of the plastid DcMP sequence identified
three putative open reading frames (ORFs) with
similarity to retrotransposon element domains
(gag domain and reverse transcriptase) and a 6 nt
direct repeat (CTTGAC), flanking the DcMP
sequence, upstream of DcMP1, and downstream
of DcMP4 (Fig. 12.1b) (Iorizzo et al. 2012b).
These characteristics suggested that the DcMP
might be a non-LTR retrotransposon and the
direct repeats represent target site duplication
(TSD) created because of the DcMP integration
following its mobilization from a donor site
localized in the mitochondrial genome. Overall,
these two complementary studies demonstrated
for the first time that DNA transfer from the
mitochondrion to the plastid can occur in flow-
ering plants and provided a hypothesis about its
possible mode of integration.

Considering the stability of the plastid gen-
ome, it is legitimate to hypothesize that a mt-to-pt
insertion within a phylogenetic clade is likely to
have originated from a single event in a common
ancestor, making this type of insertion useful to
trace ancestry and genetic relationships within the
Scandiceae tribe, which includes three subtribes
Daucinae, Torilidinae, and Scandicinae. Analysis
of 37 plastid genomes including members of the
Daucinae and Torilidinae subtribes indicated that
the DcMP region was detected in all 36 members
of the Daucinae clade and in C. platycarpos, a
member of the Torilidinae clade (Spooner et al.
2017). Comparative analysis of the DcMP region
across the 37 plastid genomes revealed 21 struc-
tural variants (SVs) (insertions or deletions)
(Fig. 12.4). Relative to the plastid phylogeny of
Spooner et al. (2017), there is a direct cladistic
relationship of these SVs with all accessions of
Daucus and its immediate sister species

david.spooner@ars.usda.gov
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P. pumila, R. polygama, and C. platycarpos
(Fig. 12.4). To expand the search for DcMP
insertion within the Apiaceae, Downie and Jansen
(2015) compared the plastomes of six Apiaceae
species (C. maritimum, D. carota, Hydrocotyle
verticillata, Petroselinum crispum, and Tiede-
mannia filiformis subsp. greenmani) including
Anthriscus cerefolium, a member of the Scan-
dicinae subtribe. Despite the observation that
another putative insertion of mtDNA, unrelated to
DcMP is present in the plastid genome of
P. crispum, none of these six plastid genomes
contain the DcMP sequence. Overall, these two
studies indicated that the DcMP insertion is
restricted to the Torilidinae subtribe (C. platy-
carpos) and Daucinae (36 species), which implies
that within the Scandicinae tribe these two sub-
tribes are genetically more closely related as
compared with the Scandicinae subtribe where
the insertion has not been detected. This
hypothesis is supported by previous systematic
and molecular marker work (Lee and Downie
2000; Lee et al. 2001) and confirms our hypoth-
esis that detection of the DcMP sequence can be
used as a marker to delineate relationships in this
clade.

Sequence analysis of the DcMP regions
detected in 36 species (Spooner et al. 2017)
revealed other important aspects related to IGT in
plants. Within the DcMP region, two large
insertions were detected in the C. platycarpos
plastid genome, named Cp MP5 (6663 nt) and
Cp MP6 (360 nt). A large portion of the Cp MP5
sequence (KX832334 from 102,567 to 105,470)
shares a high similarity (91% identity) with
DCAR_022437, a nuclear gene located on carrot
Chr6 annotated as an auxin response factor
(ARF). The alignment covers seven of the 14
DCAR_022437 predicted exons, and none of its
flanking nuclear sequences shares similarity with
other plastid sequences (Fig. 12.5a). These find-
ings represent the first evidence of a known
nuclear sequence inserted in a plastid genome.
Either the plastid ARF DNA sequence found in
C. platycarpos could be part of the ancestral
mitochondrial DcMP sequence, or it could have
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been transferred directly from the nucleus or
mitochondrion into the plastid after the mt-to-pt
DcMP insertion occurred. The mechanism of
transfer of this nuclear DNA relative to the
insertion of DcMP in the plastid genome is
unknown. However, the sequence covering the
DcMP and CpMP regions documented in C.
platycarpos contains an intact cox/ copy and
fragments of ARF gene. Indeed, the Cp MP5 3’
end and Cp MP6 5’ end are contiguous to the
pt-DcMP2 sequence and the carrot mt-Dc MP2
flanking sequences and cover the full length of
the mitochondrial cox! gene (Fig. 12.5b). These
findings indicate that direct insertion of nDNA
into the plastome at the very same locus as
mtDNA insertion is implausible compared with
its insertion along with the mtDNA, as mito-
genomes of land plants contain abundant foreign
DNA from both IGT and HGT events (Knoop
2004; Alverson et al. 2010; Park et al. 2014). In
particular, an ARF gene (ARF17) has been
transferred to the mitogenome in several genera
of Brassicaceae (Qiu et al. 2014).

In higher plants, horizontally transferred DNA
is generally not functional in the recipient gen-
ome (Bock 2015; Richardson and Palmer 2007).
In contrast, in carrot the DcMP sequence inte-
grated three new functional promoters (P1, P2,
and P3) located 105-, 41-, and 16-nt upstream of
trnV, respectively, at the 3 —DcMP insertion
junction. According to Manna et al. (1994), all
three promoters are expressed in carrot cells and
were responsible for the differential expression of
trnV during embryogenesis. Assuming that all
three promoters have a functional role, we expect
their sequences to be conserved. Across all the
samples harboring the pt-DcMP insertion, SVs
resulted in the deletion of the P1 or P2 promoter
sequences in at least one species (Spooner et al.
2017). In contrast, despite the observation that
multiple independent insertion or deletion events
occurred in the DcMP-4 region near the P3
promoter, its sequence is conserved across all
accessions harboring the DcMP insertion
(Fig. 12.4). Considering correct the hypothesis
proposed by Manna et al. (1994) that the P3
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Fig. 12.5 DcMP comparative analysis. a Comparison
between the Daucus carota nuclear genome region
containing auxin response factor (ARF) gene
DCAR_022437 in the antisense orientation, and Caucalis
platycarpos plastid sequence spanning the DcMP region.
Gray shading linking sequences indicate regions with
>92% nucleotide similarity. b Comparison between the C.

promoter plays a functional and advantageous
role on the expression of trnV, the comparative
studies suggest that natural selection has main-
tained its sequence intact promoting the retention
of the ancestral DcMP sequence in the plastid
genome after its first integration.
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